Recent results on Dirichlet series Sigma(n) a(n) 1/n(s), s is an element of C, with coefficients a(n) in an infinite dimensional Banach space X show that the maximal width of uniform but not absolute convergence coincides for Dirichlet series and for m-homogeneous Dirichlet polynomials. But a classical non-trivial fact fue to Bohnenblust and Hille shows that if X is one dimensional, this maximal width heavily depends on the degree m of the Dirichlet polynomials. We carefully analyze this phenomenon, in particular in the setting of l(p)-spaces.
机构:
Univ Buenos Aires, Fac Cs Exactas & Nat, Dept Matemat Pab 1, RA-1428 Buenos Aires, DF, Argentina
IMAS CONICET, Buenos Aires, DF, ArgentinaUniv Buenos Aires, Fac Cs Exactas & Nat, Dept Matemat Pab 1, RA-1428 Buenos Aires, DF, Argentina