CONVERGENCE OF DIRICHLET POLYNOMIALS IN BANACH SPACES

被引:8
|
作者
Defant, Andreas [1 ]
Sevilla Peris, Pablo [1 ,2 ,3 ]
机构
[1] Carl von Ossietzky Univ Oldenburg, Inst Math, D-26111 Oldenburg, Germany
[2] Univ Politecn Valencia, Dept Matemat Aplicada, E-46010 Valencia, Spain
[3] Univ Politecn Valencia, IUMPA FTSMRL, E-46010 Valencia, Spain
关键词
Vector valued Dirichlet series; Dirichlet polynomials; Banach spaces; SERIES;
D O I
10.1090/S0002-9947-2010-05146-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Recent results on Dirichlet series Sigma(n) a(n) 1/n(s), s is an element of C, with coefficients a(n) in an infinite dimensional Banach space X show that the maximal width of uniform but not absolute convergence coincides for Dirichlet series and for m-homogeneous Dirichlet polynomials. But a classical non-trivial fact fue to Bohnenblust and Hille shows that if X is one dimensional, this maximal width heavily depends on the degree m of the Dirichlet polynomials. We carefully analyze this phenomenon, in particular in the setting of l(p)-spaces.
引用
收藏
页码:681 / 697
页数:17
相关论文
共 50 条