The Effect of Arbuscular Mycorrhizal Fungi on Photosystem II of the Host Plant Under Salt Stress: A Meta-Analysis

被引:17
|
作者
Wang, Yingnan [1 ]
Wang, Jinghong [1 ]
Yan, Xiufeng [2 ]
Sun, Shengnan [3 ,4 ]
Lin, Jixiang [1 ]
机构
[1] Northeast Forestry Univ, Coll Landscape Architecture, Minist Educ, Key Lab Saline Alkali Vegetat Ecol Restorat, Harbin 150040, Peoples R China
[2] Wenzhou Univ, Coll Life Sci, Wenzhou 325000, Peoples R China
[3] Yangzhou Univ, Coll Anim Sci, Yangzhou 225009, Jiangsu, Peoples R China
[4] Yangzhou Univ, Coll Technol, Yangzhou 225009, Jiangsu, Peoples R China
来源
AGRONOMY-BASEL | 2019年 / 9卷 / 12期
关键词
Arbuscular mycorrhizal fungi; meta-analysis; photosynthesis; photosystem II; salt stress; CHLOROPHYLL FLUORESCENCE; PHOTOSYNTHESIS; SALINITY; SEEDLINGS; ROOT; TOLERANCE; RESPONSES; DROUGHT; GROWTH;
D O I
10.3390/agronomy9120806
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
As important components of the photosynthetic apparatus, photosystems I (PS I) and II (PS II) are sensitive to salinity. Salt stress can destroy the PS II reaction center, disrupt electron transport from PS II to PS I, and ultimately lead to a decrease in the photosynthetic capacity of the plant. Arbuscular mycorrhizal fungi (AMF) can enhance the photosynthetic capacity of a host plant under salinity stress. However, this specific effect of AMF is not always predictable. Here, we conducted a meta-analysis including 436 independent observations to compare chlorophyll fluorescence parameters in response to AMF inoculation under salt stress. The results showed that AMF inoculation had a positive total impact on photosynthesis in the host plant. Subgroup analysis showed that annual host plants had better performance in terms of photosynthesis after inoculation. The mitigating effects of AMF on the photosynthetic rate (Pn), actual quantum yield of photochemical energy conversion in PS II (PS II), and electron transfer rate (ETR) in C4 species were higher than those in C3 species. Moreover, the photosynthesis performance of monocotyledon species was better than that of dicotyledon species after AMF inoculation. The woody host plants had higher energy utilization by way of an enhanced electron transfer rate to reduce energy dissipation after AMF inoculation. Finally, the mitigating effect of AMF on plants under moderate salinity was stronger than that under high salinity. Among AMF species, Funneliformis mosseae was found to be the most effective in enhancing the photosynthesis performance of plants. For the analyzed dataset, AMF inoculation alleviated the detrimental effects of salinity on photosystem II of the host plant by improving the utilization of photons and photosynthetic electron transport, and also by reducing the susceptibility of photosystem II to photoinhibition.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Effect of arbuscular mycorrhizal fungi on tree growth and nutrient uptake of Sclerocarya birrea under water stress, salt stress and flooding
    Muok, BO
    Ishii, T
    JOURNAL OF THE JAPANESE SOCIETY FOR HORTICULTURAL SCIENCE, 2006, 75 (01): : 26 - 31
  • [42] Effects of arbuscular mycorrhizal fungi on the reduction of arsenic accumulation in plants: a meta-analysis
    Hao, Shangyan
    Tian, Ye
    Lin, Zhiqing
    Xie, Linzhi
    Zhou, Xinbin
    Banuelos, Gary S.
    FRONTIERS IN PLANT SCIENCE, 2024, 15
  • [43] Arbuscular mycorrhizal fungi mitigate soil nitrogen and phosphorus losses: A meta-analysis
    Qiu, Qingyan
    Bender, S. Franz
    Mgelwa, Abubakari Said
    Hu, Yalin
    SCIENCE OF THE TOTAL ENVIRONMENT, 2022, 807
  • [44] Host plant quality mediates competition between arbuscular mycorrhizal fungi
    Knegt, Bram
    Jansa, Jan
    Franken, Oscar
    Engelmoer, Daniel J. P.
    Werner, Gijsbert D. A.
    Buecking, Heike
    Kiers, E. Toby
    FUNGAL ECOLOGY, 2016, 20 : 233 - 240
  • [45] Arbuscular mycorrhizal fungi change host plant DNA methylation systemically
    Varga, S.
    Soulsbury, C. D.
    PLANT BIOLOGY, 2019, 21 (02) : 278 - 283
  • [46] Meta-Analysis of Interactions between Arbuscular Mycorrhizal Fungi and Biotic Stressors of Plants
    Yang, Haishui
    Dai, Yajun
    Wang, Xiaohua
    Zhang, Qian
    Zhu, Liqun
    Bian, Xinmin
    SCIENTIFIC WORLD JOURNAL, 2014,
  • [47] Role of arbuscular mycorrhizal fungi in the water and nutrient supplies of the host plant
    Takács, T
    Vörös, I
    NOVENYTERMELES, 2003, 52 (05): : 583 - 593
  • [48] The use of Arbuscular mycorrhizal fungi to alleviate the growth and photosynthetic characteristics of strawberry under salt stress
    Fan, Li
    Zhang, Chen
    Li, Jiafeng
    Liu, Yan
    ACTA PHYSIOLOGIAE PLANTARUM, 2024, 46 (12)
  • [49] Effects of arbuscular mycorrhizal fungi on photosynthesis and chlorophyll fluorescence of maize seedlings under salt stress
    Xu, Hongwen
    Lu, Yan
    Tong, Shuyuan
    EMIRATES JOURNAL OF FOOD AND AGRICULTURE, 2018, 30 (03): : 199 - 204
  • [50] Effects of arbuscular mycorrhizal fungi on growth and nitrogen uptake of Chrysanthemum morifolium under salt stress
    Wang, Yanhong
    Wang, Minqiang
    Li, Yan
    Wu, Aiping
    Huang, Juying
    PLOS ONE, 2018, 13 (04):