The Effect of Arbuscular Mycorrhizal Fungi on Photosystem II of the Host Plant Under Salt Stress: A Meta-Analysis

被引:17
|
作者
Wang, Yingnan [1 ]
Wang, Jinghong [1 ]
Yan, Xiufeng [2 ]
Sun, Shengnan [3 ,4 ]
Lin, Jixiang [1 ]
机构
[1] Northeast Forestry Univ, Coll Landscape Architecture, Minist Educ, Key Lab Saline Alkali Vegetat Ecol Restorat, Harbin 150040, Peoples R China
[2] Wenzhou Univ, Coll Life Sci, Wenzhou 325000, Peoples R China
[3] Yangzhou Univ, Coll Anim Sci, Yangzhou 225009, Jiangsu, Peoples R China
[4] Yangzhou Univ, Coll Technol, Yangzhou 225009, Jiangsu, Peoples R China
来源
AGRONOMY-BASEL | 2019年 / 9卷 / 12期
关键词
Arbuscular mycorrhizal fungi; meta-analysis; photosynthesis; photosystem II; salt stress; CHLOROPHYLL FLUORESCENCE; PHOTOSYNTHESIS; SALINITY; SEEDLINGS; ROOT; TOLERANCE; RESPONSES; DROUGHT; GROWTH;
D O I
10.3390/agronomy9120806
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
As important components of the photosynthetic apparatus, photosystems I (PS I) and II (PS II) are sensitive to salinity. Salt stress can destroy the PS II reaction center, disrupt electron transport from PS II to PS I, and ultimately lead to a decrease in the photosynthetic capacity of the plant. Arbuscular mycorrhizal fungi (AMF) can enhance the photosynthetic capacity of a host plant under salinity stress. However, this specific effect of AMF is not always predictable. Here, we conducted a meta-analysis including 436 independent observations to compare chlorophyll fluorescence parameters in response to AMF inoculation under salt stress. The results showed that AMF inoculation had a positive total impact on photosynthesis in the host plant. Subgroup analysis showed that annual host plants had better performance in terms of photosynthesis after inoculation. The mitigating effects of AMF on the photosynthetic rate (Pn), actual quantum yield of photochemical energy conversion in PS II (PS II), and electron transfer rate (ETR) in C4 species were higher than those in C3 species. Moreover, the photosynthesis performance of monocotyledon species was better than that of dicotyledon species after AMF inoculation. The woody host plants had higher energy utilization by way of an enhanced electron transfer rate to reduce energy dissipation after AMF inoculation. Finally, the mitigating effect of AMF on plants under moderate salinity was stronger than that under high salinity. Among AMF species, Funneliformis mosseae was found to be the most effective in enhancing the photosynthesis performance of plants. For the analyzed dataset, AMF inoculation alleviated the detrimental effects of salinity on photosystem II of the host plant by improving the utilization of photons and photosynthetic electron transport, and also by reducing the susceptibility of photosystem II to photoinhibition.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Responses of arbuscular mycorrhizal fungi to nitrogen addition: A meta-analysis
    Han, Yunfeng
    Feng, Jiguang
    Han, Mengguang
    Zhu, Biao
    GLOBAL CHANGE BIOLOGY, 2020, 26 (12) : 7229 - 7241
  • [22] Arbuscular mycorrhizal fungi in alleviation of salt stress: a review
    Evelin, Heikham
    Kapoor, Rupam
    Giri, Bhoopander
    ANNALS OF BOTANY, 2009, 104 (07) : 1263 - 1280
  • [23] Inoculation with arbuscular mycorrhizal fungi improves plant biomass and nitrogen and phosphorus nutrients: a meta-analysis
    Wu, Yingjie
    Chen, Chongjuan
    Wang, Guoan
    BMC PLANT BIOLOGY, 2024, 24 (01):
  • [24] Proteomics Analysis of E. angustifolia Seedlings Inoculated with Arbuscular Mycorrhizal Fungi under Salt Stress
    Jia, Tingting
    Wang, Jian
    Chang, Wei
    Fan, Xiaoxu
    Sui, Xin
    Song, Fuqiang
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2019, 20 (03)
  • [25] Responses of Legumes to Rhizobia and Arbuscular Mycorrhizal Fungi Under Abiotic Stresses: A Global Meta-Analysis
    Duan, Hai-Xia
    Luo, Chong-Liang
    Wang, Xia
    Cheng, Ye-Sen
    Abrar, Muhammad
    Batool, Asfa
    AGRONOMY-BASEL, 2024, 14 (11):
  • [26] Towards growth of arbuscular mycorrhizal fungi independent of a plant host
    Hildebrandt, U
    Janetta, K
    Bothe, H
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2002, 68 (04) : 1919 - 1924
  • [27] Fatty acids in arbuscular mycorrhizal fungi are synthesized by the host plant
    Luginbuehl, Leonie H.
    Menard, Guillaume N.
    Kurup, Smita
    Van Erp, Harrie
    Radhakrishnan, Guru V.
    Breakspear, Andrew
    Oldroyd, Giles E. D.
    Eastmond, Peter J.
    SCIENCE, 2017, 356 (6343) : 1175 - 1178
  • [28] Dual plant host effects on two arbuscular mycorrhizal fungi
    Golubski, Antonio J.
    PEDOBIOLOGIA, 2011, 54 (04) : 209 - 216
  • [29] Influence of arbuscular mycorrhizal fungi on bioaccumulation and bioavailability of As and Cd: A meta-analysis
    Tan, Qiyu
    Guo, Qingjun
    Wei, Rongfei
    Zhu, Guangxu
    Du, Chenjun
    Hu, Huiying
    ENVIRONMENTAL POLLUTION, 2023, 316
  • [30] Effects of Different Arbuscular Mycorrhizal Fungi on Physiology of Viola prionantha under Salt Stress
    Liu, Yajie
    Fang, Linlin
    Zhao, Wenna
    Yang, Chunxue
    PHYTON-INTERNATIONAL JOURNAL OF EXPERIMENTAL BOTANY, 2023, 92 (01) : 55 - 69