Restructuring ordered binary trees

被引:0
|
作者
Evans, W [1 ]
Kirkpatrick, D [1 ]
机构
[1] Univ British Columbia, Dept Comp Sci, Vancouver, BC V6T 1Z4, Canada
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We consider the problem of restructuring an ordered binary tree T, preserving the in-order sequence of its nodes, so as to reduce its height to some target value h. Such a restructuring necessarily involves the downward displacement of some of the nodes of T. Our results, focusing both on the maximum displacement over all nodes and on the maximum displacement over leaves only, provide (i) an explicit tradeoff between the worst-case displacement and the height restriction (including a family of trees that exhibit the worst-case displacements) and (ii) efficient algorithms to achieve height-restricted restructuring while minimizing the maximum node displacement. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:168 / 193
页数:26
相关论文
共 50 条
  • [31] A REFINEMENT FOR ORDERED LABELED TREES
    Seo, Seunghyun
    Shin, Heesung
    KOREAN JOURNAL OF MATHEMATICS, 2012, 20 (02): : 255 - 261
  • [32] Dynamic Succinct Ordered Trees
    Farzan, Arash
    Munro, J. Ian
    AUTOMATA, LANGUAGES AND PROGRAMMING, PT I, 2009, 5555 : 439 - 450
  • [33] AN ENUMERATION PROBLEM ON ORDERED TREES
    王振宇
    ScienceBulletin, 1985, (06) : 849 - 849
  • [34] A pairing of the vertices of ordered trees
    Seo, S
    DISCRETE MATHEMATICS, 2001, 241 (1-3) : 471 - 477
  • [35] ENUMERATING ORDERED TREES LEXICOGRAPHICALLY
    ER, MC
    COMPUTER JOURNAL, 1985, 28 (05): : 538 - 542
  • [36] TREES AND LINEARLY ORDERED BICOMPACTA
    CHERTANOV, GI
    RUSSIAN MATHEMATICAL SURVEYS, 1980, 35 (03) : 309 - 313
  • [37] A Gray Code of Ordered Trees
    Nakano, Shin-ichi
    THEORY AND APPLICATIONS OF MODELS OF COMPUTATION, TAMC 2024, 2024, 14637 : 26 - 37
  • [38] NON-CROSSING MONOTONE PATHS AND BINARY TREES IN EDGE-ORDERED COMPLETE GEOMETRIC GRAPHS
    Duque, F.
    Fabila-Monroy, R.
    Hidalgo-Toscano, C.
    Perez-Lantero, P.
    ACTA MATHEMATICA HUNGARICA, 2021, 165 (01) : 28 - 39
  • [39] Non-crossing monotone paths and binary trees in edge-ordered complete geometric graphs
    F. Duque
    R. Fabila-Monroy
    C. Hidalgo-Toscano
    P. Pérez-Lantero
    Acta Mathematica Hungarica, 2021, 165 : 28 - 39
  • [40] Binary join trees
    Shenoy, PP
    UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, 1996, : 492 - 499