Restructuring ordered binary trees

被引:0
|
作者
Evans, W [1 ]
Kirkpatrick, D [1 ]
机构
[1] Univ British Columbia, Dept Comp Sci, Vancouver, BC V6T 1Z4, Canada
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We consider the problem of restructuring an ordered binary tree T, preserving the in-order sequence of its nodes, so as to reduce its height to some target value h. Such a restructuring necessarily involves the downward displacement of some of the nodes of T. Our results, focusing both on the maximum displacement over all nodes and on the maximum displacement over leaves only, provide (i) an explicit tradeoff between the worst-case displacement and the height restriction (including a family of trees that exhibit the worst-case displacements) and (ii) efficient algorithms to achieve height-restricted restructuring while minimizing the maximum node displacement. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:168 / 193
页数:26
相关论文
共 50 条
  • [21] LEXICOGRAPHIC GENERATION OF ORDERED TREES
    ZAKS, S
    THEORETICAL COMPUTER SCIENCE, 1980, 10 (01) : 63 - 82
  • [22] Clustering rooted ordered trees
    Chehreghani, Mostafa Haghir
    Rahgozar, Masoud
    Lucas, Caro
    Chehreghani, Morteza Haghir
    2007 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DATA MINING, VOLS 1 AND 2, 2007, : 450 - 455
  • [23] SOME PROPERTIES OF ORDERED TREES
    王振宇
    数学物理学报, 1982, (01) : 81 - 83
  • [24] Ordered trees and stirling numbers
    Chapman, RJ
    AMERICAN MATHEMATICAL MONTHLY, 1999, 106 (01): : 72 - 74
  • [25] Parametric alignment of ordered trees
    Wang, LS
    Zhao, JY
    BIOINFORMATICS, 2003, 19 (17) : 2237 - 2245
  • [26] Protected points in ordered trees
    Cheon, Gi-Sang
    Shapiro, Louis W.
    APPLIED MATHEMATICS LETTERS, 2008, 21 (05) : 516 - 520
  • [27] Ordered trees and the inorder traversal
    Sapounakis, A.
    Tasoulas, I.
    Tsikouras, P.
    DISCRETE MATHEMATICS, 2006, 306 (15) : 1732 - 1741
  • [28] Skew diagrams and ordered trees
    Rieper, RG
    Zeleke, M
    ADVANCES IN APPLIED MATHEMATICS, 2001, 27 (2-3) : 671 - 681
  • [29] The uplift principle for ordered trees
    Cheon, Gi-Sang
    Shapiro, Louis
    APPLIED MATHEMATICS LETTERS, 2012, 25 (06) : 1010 - 1015
  • [30] METRIC CHARACTERIZATION OF ORDERED TREES
    BARTHELEMY, JP
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1978, 286 (04): : 189 - 190