Online Blind Reverberation Time Estimation Using CRNNs

被引:17
|
作者
Deng, Shuwen [1 ]
Mack, Wolfgang [1 ]
Habets, Emanuel A. P. [1 ]
机构
[1] Int Audio Labs Erlangen, Nurnberg, Germany
来源
关键词
acoustic parameter; online; reverberation time (T60) estimation; CRNN; deep learning; ACE challenge;
D O I
10.21437/Interspeech.2020-2156
中图分类号
R36 [病理学]; R76 [耳鼻咽喉科学];
学科分类号
100104 ; 100213 ;
摘要
The reverberation time, T-60, is an important acoustic parameter in speech and acoustic signal processing. Often, the T-60 is unknown and blind estimation from a single-channel measurement is required. State-of-the-art T-60 estimation is achieved by a convolutional neural network (CNN) which maps a feature representation of the speech to the T-60. The temporal input length of the CNN is fixed. Time-varying scenarios, e.g., robot audition, require continuous T-60 estimation in an online fashion, which is computationally heavy using the CNN. We propose to use a convolutional recurrent neural network (CRNN) for blind T-60 estimation as it combines the parametric efficiency of CNNs with the online estimation of recurrent neural networks and, in contrast to CNNs, can process time-sequences of variable length. We evaluated the proposed CRNN on the Acoustic Characterization of Environments Challenge dataset for different input lengths. Our proposed method outperforms the state-of-the-art CNN approach even for shorter inputs at the cost of more trainable parameters.
引用
收藏
页码:5061 / 5065
页数:5
相关论文
共 50 条
  • [31] BLIND ESTIMATION OF REVERBERATION TIME BASED ON SPECTRO-TEMPORAL MODULATION FILTERING
    Xiong, Feifei
    Goetze, Stefan
    Meyer, Bernd T.
    2013 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2013, : 443 - 447
  • [32] Robust Estimation of Reverberation Time Using Polynomial Roots
    Kelly, Ian J.
    Boland, Francis M.
    Skoglund, Jan
    60TH AES INTERNATIONAL CONFERENCE ON DREAMS (DEREVERBERATION AND REVERBERATION OF AUDIO, MUSIC, AND SPEECH), 2016,
  • [33] BLIND ESTIMATION OF DIRECTIONAL PROPERTIES OF ROOM REVERBERATION USING A SPHERICAL MICROPHONE ARRAY
    Samarasinghe, Prasanga N.
    Abhayapala, Thushara D.
    2017 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2017, : 351 - 355
  • [34] Estimation of Reverberation Time in Classrooms Using the Residual Minimization Method
    Nowoswiat, Artur
    Olechowska, Marcelina
    ARCHIVES OF ACOUSTICS, 2017, 42 (04) : 609 - 617
  • [35] Fast estimation of speech transmission index using the reverberation time
    Nowoswiat, Artur
    Olechowska, Marcelina
    APPLIED ACOUSTICS, 2016, 102 : 55 - 61
  • [36] Speech dereverberation based on blind estimation of a reverberation filter
    Zee, Min-Seon
    Park, Hyung-Min
    IEICE ELECTRONICS EXPRESS, 2009, 6 (20): : 1456 - 1461
  • [37] SINGLE-CHANNEL BLIND ESTIMATION OF REVERBERATION PARAMETERS
    Doire, Clement S. J.
    Brookes, Mike
    Naylor, Patrick A.
    Betts, Dave
    Hicks, Christopher M.
    Dmour, Mohammad A.
    Jensen, Soren Holdt
    2015 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING (ICASSP), 2015, : 31 - 35
  • [38] EFFICIENT BLIND ESTIMATION OF SUBBAND REVERBERATION TIME FROM SPEECH IN NON-DIFFUSE ENVIRONMENTS
    Diether, Salomon
    Bruderer, Lukas
    Streich, Andreas
    Loeliger, Hans-Andrea
    2015 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING (ICASSP), 2015, : 743 - 747
  • [39] Single-Channel Blind Direct-to-Reverberation Ratio Estimation Using Masking
    Mack, Wolfgang
    Deng, Shuwen
    Habets, Emanuel A. P.
    INTERSPEECH 2020, 2020, : 5066 - 5070
  • [40] A denoising-aided multi-task learning method for blind estimation of reverberation time
    Zhang, Yulong
    Sang, Jinqiu
    Zheng, Chengshi
    Li, Xiaodong
    MEASUREMENT, 2024, 231