Online Blind Reverberation Time Estimation Using CRNNs

被引:17
|
作者
Deng, Shuwen [1 ]
Mack, Wolfgang [1 ]
Habets, Emanuel A. P. [1 ]
机构
[1] Int Audio Labs Erlangen, Nurnberg, Germany
来源
关键词
acoustic parameter; online; reverberation time (T60) estimation; CRNN; deep learning; ACE challenge;
D O I
10.21437/Interspeech.2020-2156
中图分类号
R36 [病理学]; R76 [耳鼻咽喉科学];
学科分类号
100104 ; 100213 ;
摘要
The reverberation time, T-60, is an important acoustic parameter in speech and acoustic signal processing. Often, the T-60 is unknown and blind estimation from a single-channel measurement is required. State-of-the-art T-60 estimation is achieved by a convolutional neural network (CNN) which maps a feature representation of the speech to the T-60. The temporal input length of the CNN is fixed. Time-varying scenarios, e.g., robot audition, require continuous T-60 estimation in an online fashion, which is computationally heavy using the CNN. We propose to use a convolutional recurrent neural network (CRNN) for blind T-60 estimation as it combines the parametric efficiency of CNNs with the online estimation of recurrent neural networks and, in contrast to CNNs, can process time-sequences of variable length. We evaluated the proposed CRNN on the Acoustic Characterization of Environments Challenge dataset for different input lengths. Our proposed method outperforms the state-of-the-art CNN approach even for shorter inputs at the cost of more trainable parameters.
引用
收藏
页码:5061 / 5065
页数:5
相关论文
共 50 条
  • [21] Analysis of Reverberation Time Blind Estimation used in Audio Forensics
    Ciobanu, Amelia
    Culda, Tudor
    Negrescu, Cristian
    Stanomir, Dumitru
    2014 11TH INTERNATIONAL SYMPOSIUM ON ELECTRONICS AND TELECOMMUNICATIONS (ISETC), 2014,
  • [22] Efficient ML-Estimator for Blind Reverberation Time Estimation
    Loellmann, Heinrich W.
    Brendel, Andreas
    Kellermann, Walter
    2018 26TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2018, : 2195 - 2199
  • [23] Online reverberation time and clarity estimation in dynamic acoustic conditions
    Götz, Philipp
    Tuna, Cagdas
    Walther, Andreas
    Habets, Emanuël A. P.
    Journal of the Acoustical Society of America, 2023, 153 (06): : 3532 - 3542
  • [24] Online reverberation time and clarity estimation in dynamic acoustic conditions
    Goetz, Philipp
    Tuna, Cagdas
    Walther, Andreas
    Habets, Emanuel A. P.
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2023, 153 (06): : 3532 - 3542
  • [25] Endorsement to Audio Recorded in Different Acoustic Environment with Feature as Reverberation Time with Blind Reverberation Time Estimation Method
    Kamble, Kiran P.
    Chavan, Manik K.
    2017 INTERNATIONAL CONFERENCE ON BIG DATA, IOT AND DATA SCIENCE (BID), 2017, : 54 - 59
  • [26] Speech-Model Based Accurate Blind Reverberation Time Estimation Using an LPC Filter
    Keshavarz, Abbas
    Mosayyebpour, Saeed
    Biguesh, Mehrzad
    Gulliver, T. Aaron
    Esmaeili, Morteza
    IEEE TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2012, 20 (06): : 1884 - 1893
  • [27] ACOUSTIC BLUR KERNEL WITH SLIDING WINDOW FOR BLIND ESTIMATION OF REVERBERATION TIME
    Lim, Felicia
    Naylor, Patrick A.
    Thomas, Mark R. P.
    Tashev, Ivan J.
    2015 IEEE WORKSHOP ON APPLICATIONS OF SIGNAL PROCESSING TO AUDIO AND ACOUSTICS (WASPAA), 2015,
  • [28] Blind estimation of reverberation time based on the distribution of signal decay rates
    Wen, Jimi Y. C.
    Habets, Emanuel A. P.
    Naylor, Patrick A.
    2008 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-12, 2008, : 329 - +
  • [29] Blind reverberation energy estimation using exponential averaging with attack and release time constants for hearing aids
    Nozaki, Kotoyo
    Ikeda, Yusuke
    Oikawa, Yasuhiro
    Fujisaka, Yoh-ichi
    Sunohara, Masahiro
    APPLIED ACOUSTICS, 2018, 142 : 106 - 113
  • [30] Noise-robust blind reverberation time estimation using noise-aware time-frequency masking
    Zheng, Kaitong
    Zheng, Chengshi
    Sang, Jinqiu
    Zhang, Yulong
    Li, Xiaodong
    MEASUREMENT, 2022, 192