Online Blind Reverberation Time Estimation Using CRNNs

被引:17
|
作者
Deng, Shuwen [1 ]
Mack, Wolfgang [1 ]
Habets, Emanuel A. P. [1 ]
机构
[1] Int Audio Labs Erlangen, Nurnberg, Germany
来源
关键词
acoustic parameter; online; reverberation time (T60) estimation; CRNN; deep learning; ACE challenge;
D O I
10.21437/Interspeech.2020-2156
中图分类号
R36 [病理学]; R76 [耳鼻咽喉科学];
学科分类号
100104 ; 100213 ;
摘要
The reverberation time, T-60, is an important acoustic parameter in speech and acoustic signal processing. Often, the T-60 is unknown and blind estimation from a single-channel measurement is required. State-of-the-art T-60 estimation is achieved by a convolutional neural network (CNN) which maps a feature representation of the speech to the T-60. The temporal input length of the CNN is fixed. Time-varying scenarios, e.g., robot audition, require continuous T-60 estimation in an online fashion, which is computationally heavy using the CNN. We propose to use a convolutional recurrent neural network (CRNN) for blind T-60 estimation as it combines the parametric efficiency of CNNs with the online estimation of recurrent neural networks and, in contrast to CNNs, can process time-sequences of variable length. We evaluated the proposed CRNN on the Acoustic Characterization of Environments Challenge dataset for different input lengths. Our proposed method outperforms the state-of-the-art CNN approach even for shorter inputs at the cost of more trainable parameters.
引用
收藏
页码:5061 / 5065
页数:5
相关论文
共 50 条
  • [1] Blind estimation of reverberation time
    Ratnam, R
    Jones, DL
    Wheeler, BC
    O'Brien, WD
    Lansing, CR
    Feng, AS
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2003, 114 (05): : 2877 - 2892
  • [2] Blind estimation of reverberation time
    Ratnam, R. (ratnam@uiuc.edu), 1600, Acoustical Society of America (114):
  • [3] BLIND ESTIMATION OF REVERBERATION TIME USING DEEP NEURAL NETWORK
    Lee, Myungin
    Chang, Joon-Hyuk
    PROCEEDINGS OF 2016 5TH IEEE INTERNATIONAL CONFERENCE ON NETWORK INFRASTRUCTURE AND DIGITAL CONTENT (IEEE IC-NIDC 2016), 2016, : 308 - 311
  • [4] BLIND REVERBERATION TIME ESTIMATION USING A CONVOLUTIONAL NEURAL NETWORK
    Gamper, Hannes
    Tashev, Ivan J.
    2018 16TH INTERNATIONAL WORKSHOP ON ACOUSTIC SIGNAL ENHANCEMENT (IWAENC), 2018, : 136 - 140
  • [5] Fast algorithms for blind estimation of reverberation time
    Ratnam, R
    Jones, DL
    O'Brien, WD
    IEEE SIGNAL PROCESSING LETTERS, 2004, 11 (06) : 537 - 540
  • [6] ALGORITHMS AND EVALUATION ON BLIND ESTIMATION OF REVERBERATION TIME
    Adrian, Jens-Alrik
    Bitzer, Joerg
    2014 PROCEEDINGS OF THE 22ND EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2014, : 676 - 680
  • [7] BLUR KERNEL ESTIMATION APPROACH TO BLIND REVERBERATION TIME ESTIMATION
    Lim, Felicia
    Thomas, Mark R. P.
    Tashev, Ivan J.
    2015 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING (ICASSP), 2015, : 41 - 45
  • [8] BLIND ESTIMATION OF REVERBERATION TIME USING BINAURAL COMPLEX IDEAL RATIO MASK
    Chai, MingYang
    Li, TianTian
    Zhu, MengYao
    Wang, Tao
    Zhang, Wen
    2019 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA & EXPO WORKSHOPS (ICMEW), 2019, : 378 - 383
  • [9] BLIND LOW-COMPLEXITY ESTIMATION OF REVERBERATION TIME
    Schuldt, Christian
    Handel, Peter
    2013 IEEE WORKSHOP ON APPLICATIONS OF SIGNAL PROCESSING TO AUDIO AND ACOUSTICS (WASPAA), 2013,
  • [10] A Novel Approach for Blind Estimation of Reverberation Time using Gamma Distribution Model
    Hamza, Amad
    Jan, Tariqullah
    Jehangir, Asiya
    Shah, Waqar
    Zafar, Haseeb
    Asif, M.
    JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2016, 11 (02) : 529 - 536