Observation of many-body localization of interacting fermions in a quasirandom optical lattice

被引:1310
|
作者
Schreiber, Michael [1 ,2 ]
Hodgman, Sean S. [1 ,2 ]
Bordia, Pranjal [1 ,2 ]
Lueschen, Henrik P. [1 ,2 ]
Fischer, Mark H. [3 ]
Vosk, Ronen [3 ]
Altman, Ehud [3 ]
Schneider, Ulrich [1 ,2 ,4 ]
Bloch, Immanuel [1 ,2 ]
机构
[1] Univ Munich, Fak Phys, D-80799 Munich, Germany
[2] Max Planck Inst Quantum Opt, D-85748 Garching, Germany
[3] Weizmann Inst Sci, Dept Condensed Matter Phys, IL-7610001 Rehovot, Israel
[4] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England
关键词
ANDERSON LOCALIZATION; ULTRACOLD ATOMS; SYSTEM; GAS; THERMALIZATION; EQUILIBRIUM; RELAXATION; TRANSPORT; INSULATOR; MATTER;
D O I
10.1126/science.aaa7432
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Many-body localization (MBL), the disorder-induced localization of interacting particles, signals a breakdown of conventional thermodynamics because MBL systems do not thermalize and show nonergodic time evolution. We experimentally observed this nonergodic evolution for interacting fermions in a one-dimensional quasirandom optical lattice and identified the MBL transition through the relaxation dynamics of an initially prepared charge density wave. For sufficiently weak disorder, the time evolution appears ergodic and thermalizing, erasing all initial ordering, whereas above a critical disorder strength, a substantial portion of the initial ordering persists. The critical disorder value shows a distinctive dependence on the interaction strength, which is in agreement with numerical simulations. Our experiment paves the way to further detailed studies of MBL, such as in noncorrelated disorder or higher dimensions.
引用
收藏
页码:842 / 845
页数:4
相关论文
共 50 条
  • [31] A Quantum Many-Body Spin System in an Optical Lattice Clock
    Martin, M. J.
    Bishof, M.
    Swallows, M. D.
    Zhang, X.
    Benko, C.
    von-Stecher, J.
    Gorshkov, A. V.
    Rey, A. M.
    Ye, Jun
    SCIENCE, 2013, 341 (6146) : 632 - 636
  • [32] Probing many-body spin interactions with an optical lattice clock
    Rey, A. M.
    Martin, M. J.
    Swallows, M. D.
    Bishof, M.
    Benko, C.
    Blatt, S.
    Von Stecher, J.
    Gorshkov, A.
    Ye, J.
    2012 IEEE INTERNATIONAL FREQUENCY CONTROL SYMPOSIUM (FCS), 2012,
  • [33] Many-body localization landscape
    Balasubramanian, Shankar
    Liao, Yunxiang
    Galitski, Victor
    PHYSICAL REVIEW B, 2020, 101 (01)
  • [34] Many-body flatband localization
    Danieli, Carlo
    Andreanov, Alexei
    Flach, Sergej
    PHYSICAL REVIEW B, 2020, 102 (04)
  • [35] Dynamics of many-body localization
    Bar Lev, Yevgeny
    Reichman, David R.
    PHYSICAL REVIEW B, 2014, 89 (22)
  • [36] Topology and many-body localization
    Bhatt, R. N.
    Krishna, Akshay
    ANNALS OF PHYSICS, 2021, 435
  • [37] Many-body formalism for fermions: The partition function
    Watson, D. K.
    PHYSICAL REVIEW A, 2017, 96 (03)
  • [38] Spin Localization of a Fermi Polaron in a Quasirandom Optical Lattice
    Duncan, C. W.
    Loft, N. J. S.
    Ohberg, P.
    Zinner, N. T.
    Valiente, M.
    FEW-BODY SYSTEMS, 2017, 58 (02)
  • [39] Spin Localization of a Fermi Polaron in a Quasirandom Optical Lattice
    C. W. Duncan
    N. J. S. Loft
    P. Öhberg
    N. T. Zinner
    M. Valiente
    Few-Body Systems, 2017, 58
  • [40] Publisher Correction: Observation of Stark many-body localization without disorder
    W. Morong
    F. Liu
    P. Becker
    K. S. Collins
    L. Feng
    A. Kyprianidis
    G. Pagano
    T. You
    A. V. Gorshkov
    C. Monroe
    Nature, 2022, 601 : E13 - E13