Observation of many-body localization of interacting fermions in a quasirandom optical lattice

被引:1310
|
作者
Schreiber, Michael [1 ,2 ]
Hodgman, Sean S. [1 ,2 ]
Bordia, Pranjal [1 ,2 ]
Lueschen, Henrik P. [1 ,2 ]
Fischer, Mark H. [3 ]
Vosk, Ronen [3 ]
Altman, Ehud [3 ]
Schneider, Ulrich [1 ,2 ,4 ]
Bloch, Immanuel [1 ,2 ]
机构
[1] Univ Munich, Fak Phys, D-80799 Munich, Germany
[2] Max Planck Inst Quantum Opt, D-85748 Garching, Germany
[3] Weizmann Inst Sci, Dept Condensed Matter Phys, IL-7610001 Rehovot, Israel
[4] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England
关键词
ANDERSON LOCALIZATION; ULTRACOLD ATOMS; SYSTEM; GAS; THERMALIZATION; EQUILIBRIUM; RELAXATION; TRANSPORT; INSULATOR; MATTER;
D O I
10.1126/science.aaa7432
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Many-body localization (MBL), the disorder-induced localization of interacting particles, signals a breakdown of conventional thermodynamics because MBL systems do not thermalize and show nonergodic time evolution. We experimentally observed this nonergodic evolution for interacting fermions in a one-dimensional quasirandom optical lattice and identified the MBL transition through the relaxation dynamics of an initially prepared charge density wave. For sufficiently weak disorder, the time evolution appears ergodic and thermalizing, erasing all initial ordering, whereas above a critical disorder strength, a substantial portion of the initial ordering persists. The critical disorder value shows a distinctive dependence on the interaction strength, which is in agreement with numerical simulations. Our experiment paves the way to further detailed studies of MBL, such as in noncorrelated disorder or higher dimensions.
引用
收藏
页码:842 / 845
页数:4
相关论文
共 50 条
  • [21] Many-body localization of bosons in an optical lattice: Dynamics in disorder-free potentials
    Yao, Ruixiao
    Zakrzewski, Jakub
    PHYSICAL REVIEW B, 2020, 102 (10)
  • [22] Many-body mobility edges in a one-dimensional system of interacting fermions
    Nag, Sabyasachi
    Garg, Arti
    PHYSICAL REVIEW B, 2017, 96 (06)
  • [23] Interacting many-body systems
    FLOW EQUATION APPROACH TO MANY-PARTICLE SYSTEMS, 2006, 217 : 63 - 135
  • [24] Many-Body Dynamics of Dipolar Molecules in an Optical Lattice
    Hazzard, Kaden R. A.
    Gadway, Bryce
    Foss-Feig, Michael
    Yan, Bo
    Moses, Steven A.
    Covey, Jacob P.
    Yao, Norman Y.
    Lukin, Mikhail D.
    Ye, Jun
    Jin, Deborah S.
    Rey, Ana Maria
    PHYSICAL REVIEW LETTERS, 2014, 113 (19)
  • [25] Probing many-body interactions in an optical lattice clock
    Rey, A. M.
    Gorshkov, A. V.
    Kraus, C. V.
    Martin, M. J.
    Bishof, M.
    Swallows, M. D.
    Zhang, X.
    Benko, C.
    Ye, J.
    Lemke, N. D.
    Ludlow, A. D.
    ANNALS OF PHYSICS, 2014, 340 (01) : 311 - 351
  • [26] Many-Body Resonances in the Avalanche Instability of Many-Body Localization
    Ha, Hyunsoo
    Morningstar, Alan
    Huse, David A.
    PHYSICAL REVIEW LETTERS, 2023, 130 (25)
  • [27] From Bloch oscillations to many-body localization in clean interacting systems
    van Nieuwenburg, Evert
    Baum, Yuval
    Refael, Gil
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (19) : 9269 - 9274
  • [28] Strongly interacting fermions in an optical lattice
    Wall, M. L.
    Carr, L. D.
    PHYSICAL REVIEW A, 2013, 87 (03):
  • [29] Many-body density matrices for free fermions
    Cheong, SA
    Henley, CL
    PHYSICAL REVIEW B, 2004, 69 (07):
  • [30] Many-body diffusion algorithm: Harmonic fermions
    Luczak, F
    Brosens, F
    Devreese, JT
    Lemmens, LF
    PHYSICAL REVIEW E, 1998, 57 (02): : 2411 - 2418