AN ANALYTICAL APPROACH TO THE FRACTIONAL BIOLOGICAL POPULATION MODEL VIA EXPONENTIAL LAW AND MITTAG-LEFFLER KERNEL

被引:0
|
作者
Pareek, Neelu [1 ]
Gupta, Arvind [2 ]
机构
[1] Bhagatsingh Govt PG Coll, Dept Math, Ratlam, Madhya Pradesh, India
[2] MVM Coll, Dept Math, Bhopal, Madhya Pradesh, India
来源
关键词
biological population model; homotopy perturbation method; Atangana - Baleanu fractional operator; caputo - fabrizio fractional operator; HOMOTOPY PERTURBATION METHOD;
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this article, analytical approximate solution of time fractional non-linear biological population model which arises as a result of spatial diffusion is proposed. Considering the fractional derivatives in Atangana-Baleanu-Caputo and Caputo-FabrizioCaputo sense, the Laplace transform technique has been employed in combination to the homotopy perturbation method. Examples corresponding to Malthusian and Verhulst laws are worked out and it is shown that in most of the cases the numerical solution converges to the exact solution. The numerical simulations are presented to depict the behavior of the solution corresponding to the variations in the fractional parameter and time.
引用
收藏
页码:57 / 72
页数:16
相关论文
共 50 条
  • [41] A STURM-LIOUVILLE APPROACH FOR CONTINUOUS AND DISCRETE MITTAG-LEFFLER KERNEL FRACTIONAL OPERATORS
    Mert, Raziye
    Abdeljawad, Thabet
    Peterson, Allan
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2021, 14 (07): : 2417 - 2434
  • [42] Fixed point approach to the Mittag-Leffler kernel-related fractional differential equations
    Hammad, Hasanen A.
    Isik, Huseyin
    Aydi, Hassen
    De la Sen, Manuel
    AIMS MATHEMATICS, 2023, 8 (04): : 8633 - 8649
  • [43] A reliable analytical technique for fractional Caudrey-Dodd-Gibbon equation with Mittag-Leffler kernel
    Veeresha, P.
    Prakasha, D. G.
    NONLINEAR ENGINEERING - MODELING AND APPLICATION, 2020, 9 (01): : 319 - 328
  • [44] Analysis of Lakes pollution model with Mittag-Leffler kernel
    Prakasha, D. G.
    Veeresha, P.
    JOURNAL OF OCEAN ENGINEERING AND SCIENCE, 2020, 5 (04) : 310 - 322
  • [45] Analysis of fractional differential equations with fractional derivative of generalized Mittag-Leffler kernel
    Al-Refai, Mohammed
    Aljarrah, Abdalla
    Abdeljawad, Thabet
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [46] Analysis of fractional differential equations with fractional derivative of generalized Mittag-Leffler kernel
    Mohammed Al-Refai
    Abdalla Aljarrah
    Thabet Abdeljawad
    Advances in Difference Equations, 2021
  • [47] Analysis of HIV/AIDS model with Mittag-Leffler kernel
    Akram, Muhammad Mannan
    Farman, Muhammad
    Akgul, Ali
    Saleem, Muhammad Umer
    Ahmad, Aqeel
    Partohaghigh, Mohammad
    Jarad, Fahd
    AIMS MATHEMATICS, 2022, 7 (07): : 13383 - 13401
  • [48] Fractional Derivatives with the Power-Law and the Mittag-Leffler Kernel Applied to the Nonlinear Baggs-Freedman Model
    Francisco Gomez-Aguilar, Jose
    Atangana, Abdon
    FRACTAL AND FRACTIONAL, 2018, 2 (01) : 1 - 14
  • [49] NEW ASPECTS OF FRACTIONAL BISWAS-MILOVIC MODEL WITH MITTAG-LEFFLER LAW
    Singh, Jagdev
    Kumar, Devendra
    Baleanu, Dumitru
    MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2019, 14 (03)
  • [50] Dynamical behaviour of HIV/AIDS model using Fractional Derivative with Mittag-Leffler Kernel
    Shaikh, Amjad
    Nisar, Kottakkaran Sooppy
    Jadhav, Vikas
    Elagan, Sayed K.
    Zakarya, Mohammed
    ALEXANDRIA ENGINEERING JOURNAL, 2022, 61 (04) : 2601 - 2610