AN ANALYTICAL APPROACH TO THE FRACTIONAL BIOLOGICAL POPULATION MODEL VIA EXPONENTIAL LAW AND MITTAG-LEFFLER KERNEL

被引:0
|
作者
Pareek, Neelu [1 ]
Gupta, Arvind [2 ]
机构
[1] Bhagatsingh Govt PG Coll, Dept Math, Ratlam, Madhya Pradesh, India
[2] MVM Coll, Dept Math, Bhopal, Madhya Pradesh, India
来源
关键词
biological population model; homotopy perturbation method; Atangana - Baleanu fractional operator; caputo - fabrizio fractional operator; HOMOTOPY PERTURBATION METHOD;
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this article, analytical approximate solution of time fractional non-linear biological population model which arises as a result of spatial diffusion is proposed. Considering the fractional derivatives in Atangana-Baleanu-Caputo and Caputo-FabrizioCaputo sense, the Laplace transform technique has been employed in combination to the homotopy perturbation method. Examples corresponding to Malthusian and Verhulst laws are worked out and it is shown that in most of the cases the numerical solution converges to the exact solution. The numerical simulations are presented to depict the behavior of the solution corresponding to the variations in the fractional parameter and time.
引用
收藏
页码:57 / 72
页数:16
相关论文
共 50 条
  • [31] On some new properties of fractional derivatives with Mittag-Leffler kernel
    Baleanu, Dumitru
    Fernandez, Arran
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2018, 59 : 444 - 462
  • [32] Study on fuzzy fractional European option pricing model with Mittag-Leffler kernel
    Hashemi, Hebatollah
    Ezzati, Reza
    Mikaeilvand, Naser
    Nazari, Mojtaba
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2023, 45 (05) : 8567 - 8582
  • [33] Analysis of the fractional tumour-immune-vitamins model with Mittag-Leffler kernel
    Ahmad, Shabir
    Ullah, Aman
    Akgul, Ali
    Baleanu, Dumitru
    RESULTS IN PHYSICS, 2020, 19
  • [34] Modelling groundwater fractal flow with fractional differentiation via Mittag-Leffler law
    D. P. Ahokposi
    Abdon Atangana
    D. P. Vermeulen
    The European Physical Journal Plus, 132
  • [35] Controllability of Nonlinear Fractional Dynamical Systems with a Mittag-Leffler Kernel
    Sheng, Jiale
    Jiang, Wei
    Pang, Denghao
    Wang, Sen
    MATHEMATICS, 2020, 8 (12) : 1 - 10
  • [36] Modeling fractional-order dynamics of Syphilis via Mittag-Leffler law
    Bonyah, E.
    Chukwu, C. W.
    Juga, M. L.
    Fatmawati
    AIMS MATHEMATICS, 2021, 6 (08): : 8367 - 8389
  • [37] Approximate-analytical iterative approach to time-fractional Bloch equation with Mittag-Leffler type kernel
    Akshey
    Singh, Twinkle R.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (08) : 7028 - 7045
  • [38] Modelling groundwater fractal flow with fractional differentiation via Mittag-Leffler law
    Ahokposi, D. P.
    Atangana, Abdon
    Vermeulen, D. P.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2017, 132 (04):
  • [39] The extended Mittag-Leffler function via fractional calculus
    Rahman, Gauhar
    Baleanu, Dumitru
    Al Qurashi, Maysaa
    Purohit, Sunil Dutt
    Mubeen, Shahid
    Arshad, Muhammad
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (08): : 4244 - 4253
  • [40] Analytical Fuzzy Analysis of a Fractional-Order Newell-Whitehead-Segel Model with Mittag-Leffler Kernel
    Alkhezi, Yousuf
    Shah, Nehad Ali
    Ntwiga, Davis Bundi
    JOURNAL OF FUNCTION SPACES, 2022, 2022