Algebraic Geometry versus Kahler geometry

被引:0
|
作者
Voisin, Claire [1 ]
机构
[1] Inst Math Jussieu, CNRS, F-75013 Paris, France
关键词
Kahler manifolds; projective complex manifold; Hodge structure; polarization; Hodge class; algebraic de Rham cohomology; COMPACT KAHLER; HOMOTOPY TYPES; MANIFOLDS; CONSTRUCTION; DEFORMATIONS; CONJECTURE; INTEGRALS; EXAMPLES; PERIODS;
D O I
10.1007/s00032-010-0113-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
These notes discuss Hodge theory in the algebraic and Kahler context. We introduce the notion of (polarized) Hodge structure on a cohomology algebra and show how to extract from it topological restrictions on compact Kahler manifolds, and stronger topological restrictions on projective complex manifolds. The second part of the notes is devoted to the discussion of the Hodge conjecture, showing in particular that there is no way to extend it to the Kahler context. We will also discuss algebraic de Rham cohomology which is specific to projective complex manifolds and allows to formulate a number of arithmetic questions related to the Hodge conjecture.
引用
收藏
页码:85 / 116
页数:32
相关论文
共 50 条
  • [21] Ricci curvature in Kahler geometry
    Sun, Song
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2017, 28 (09)
  • [22] The Kahler geometry of Bott manifolds
    Boyer, Charles P.
    Calderbank, David M. J.
    Tonnesen-Friedman, Christina W.
    ADVANCES IN MATHEMATICS, 2019, 350 : 1 - 62
  • [23] THE KAHLER GEOMETRY ON THE REINHARDT DOMAINS
    YIN, WP
    KEXUE TONGBAO, 1988, 33 (05): : 436 - 437
  • [24] HARMONIC MAPS IN KAHLER GEOMETRY
    SAMPSON, JH
    LECTURE NOTES IN MATHEMATICS, 1985, 1161 : 193 - 205
  • [25] Kahler geometry and SUSY mechanics
    Bellucci, S
    Nersessian, A
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2001, 102 : 227 - 232
  • [26] On nearly-Kahler geometry
    Nagy, PA
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2002, 22 (02) : 167 - 178
  • [27] ON QUANTUM SPECIAL KAHLER GEOMETRY
    Bellucci, Stefano
    Marrani, Alessio
    Roychowdhury, Raju
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2010, 25 (09): : 1891 - 1935
  • [28] Formality in generalized Kahler geometry
    Cavalcanti, Gil R.
    TOPOLOGY AND ITS APPLICATIONS, 2007, 154 (06) : 1119 - 1125
  • [29] HYPERKAHLER AND QUATERNIONIC KAHLER GEOMETRY
    SWANN, A
    MATHEMATISCHE ANNALEN, 1991, 289 (03) : 421 - 450
  • [30] Generalized Kahler geometry and gerbes
    Hull, Chris M.
    Lindstrom, Ulf
    Rocek, Martin
    von Unge, Rikard
    Zabzine, Maxim
    JOURNAL OF HIGH ENERGY PHYSICS, 2009, (10):