Pressure drop of R134a in mini channels with micro pin fins during flow boiling

被引:12
|
作者
Li, Jie [1 ]
Zhang, Dalin [1 ]
Yubing, Wang [1 ]
Chen, Weijian [1 ]
Zhu, Guangya [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Aerosp Engn, Key Lab Aircraft Environm Control & Life Support, Minist Ind & Informat Technol, Nanjing, Peoples R China
基金
中国国家自然科学基金;
关键词
Mini channel; Micro pin fin; Flow boiling; Pressure drop; Two-phase friction multiplier; HEAT-TRANSFER; SERRATED FINS; LIQUID FLOW; PERFORMANCE; OPTIMIZATION; SHAPES; SINKS; TUBES; WATER; BANK;
D O I
10.1016/j.applthermaleng.2022.119195
中图分类号
O414.1 [热力学];
学科分类号
摘要
Flow boiling in mini channel with micro pin fin arrays is a promising technology for thermal management in various fields such as microelectronics, energy utilization and national defence. Understanding its flow char-acteristics is the pave stone for further structure optimization of two-phase microchannel heat sinks. However, previous studies paid few attentions to the effect of different structural parameters on its flow performance, especially for the application with long channels for practical evaporators in aircraft environmental control systems. In this paper, an experimental system was set up to investigate the flow boiling pressure drops of refrigerant R134a in a 300 mm long channel with micro pin fin arrays. The flow characteristics of staggered diamond pin fin arrays with different channel widths of 1.0, 1.2 and 1.4 mm and fin angles of 30 degrees, 60 degrees and 90 degrees were comprehensively investigated. The pin fins with a height of 0.5 mm were arranged in the rectangular channel through 3D printing. Two-phase pressure drops in the test section were then measured. The test range of vapor quality, mass flux, heat flux and saturation pressure were 0-1, 200-500 kg/m2s, 10.0-37.5 kW/m2 and 390-700 kPa respectively. Experimental results revealed that the smaller channel width and the greater diamond angle resulted in the greater two-phase pressure drops. The heat flux showed an insignificant influence on the two-phase pressure drops. The existing empirical correlations for pressure drops were evaluated and failed to predict the present experimental data. A new one with the consideration of pin fin structure parameters was then developed to improve the prediction accuracy with the maximum mean absolute deviation of 5.4 %. The pro-posed correlation can illuminate future study on flow boiling in mini channel with pin fin arrays and be bene-ficial for the practical design of two-phase microchannel heat sinks.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Transfer learning model to predict flow boiling heat transfer coefficient in mini channels with micro pin fins
    Zhu, Guangya
    Liu, Shirui
    Zhang, Dalin
    Chen, Weijian
    Li, Jie
    Wen, Tao
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2024, 220
  • [22] EXPERIMENTAL INVESTIGATION ON FLOW PATTERNS AND PRESSURE DROP OF R134A FLOW BOILING IN A HORIZONTAL HELICALLY COILED PIPE
    Shao, L.
    Han, J. T.
    Wang, M. X.
    Chen, C. N.
    Jen, T. C.
    JOURNAL OF ENHANCED HEAT TRANSFER, 2013, 20 (03) : 225 - 233
  • [24] Flow Boiling Heat Transfer Characteristics of R134a in a Horizontal Mini Tube
    Wang, Lihong
    Chen, Min
    Groll, Manfred
    JOURNAL OF CHEMICAL AND ENGINEERING DATA, 2009, 54 (09): : 2638 - 2645
  • [25] Investigation of flow boiling heat transfer and pressure drop of R134a in a rectangular channel with wavy fin
    Raju, M. Amaranatha
    Babu, T. P. Ashok
    Ranganayakulu, C.
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2020, 147 (147)
  • [26] Detailed experimental investigations on frictional pressure drop of R134a during flow boiling in 5 mm diameter channel: The influence of acceleration pressure drop component
    Muszynski, Tomasz
    Andrzejczyk, Rafal
    Dorao, Carlos Alberto
    INTERNATIONAL JOURNAL OF REFRIGERATION, 2017, 82 : 163 - 173
  • [27] Experimental study on condensation heat transfer of R134a in mini channel with micro diamond fins
    Liu R.
    Li J.
    Wang Y.
    Zhan H.
    Zhang D.
    Huagong Xuebao/CIESC Journal, 2022, 73 (11): : 4938 - 4947
  • [28] Flow boiling heat transfer and pressure drop of R-134a in a mini tube: an experimental investigation
    Copetti, Jacqueline B.
    Macagnan, Mario H.
    Zinani, Flavia
    Kunsler, Nicole L. F.
    EXPERIMENTAL THERMAL AND FLUID SCIENCE, 2011, 35 (04) : 636 - 644
  • [29] Characteristics of flow boiling in micro-channel with R32/R134a
    Qi, Lu-Shan
    Ma, Hu-Gen
    Xie, Rong-Jian
    Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics, 2010, 31 (12): : 2083 - 2086
  • [30] R134a flow boiling heat transfer and pressure drop inside a 3.4 mm ID microfin tube
    Mancin, Simone
    Diani, Andrea
    Rossetto, Luisa
    ATI 2013 - 68TH CONFERENCE OF THE ITALIAN THERMAL MACHINES ENGINEERING ASSOCIATION, 2014, 45 : 608 - 615