Multi-Task Rank Learning for Visual Saliency Estimation

被引:24
|
作者
Li, Jia [1 ,2 ]
Tian, Yonghong [3 ]
Huang, Tiejun [3 ]
Gao, Wen [3 ]
机构
[1] Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China
[2] Grad Univ CAS, Beijing 100049, Peoples R China
[3] Peking Univ, Sch Elect Engn & Comp Sci, Natl Engn Lab Video Technol, Key Lab Machine Percept MoE, Beijing 100871, Peoples R China
关键词
Generalization ability; multi-task learning; pair-wise rank learning; visual saliency; ATTENTION; MODEL;
D O I
10.1109/TCSVT.2011.2129430
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Visual saliency plays an important role in various video applications such as video retargeting and intelligent video advertising. However, existing visual saliency estimation approaches often construct a unified model for all scenes, thus leading to poor performance for the scenes with diversified contents. To solve this problem, we propose a multi-task rank learning approach which can be used to infer multiple saliency models that apply to different scene clusters. In our approach, the problem of visual saliency estimation is formulated in a pair-wise rank learning framework, in which the visual features can be effectively integrated to distinguish salient targets from distractors. A multi-task learning algorithm is then presented to infer multiple visual saliency models simultaneously. By an appropriate sharing of information across models, the generalization ability of each model can be greatly improved. Extensive experiments on a public eye-fixation dataset show that our multi-task rank learning approach outperforms 12 state-of-the-art methods remarkably in visual saliency estimation.
引用
收藏
页码:623 / 636
页数:14
相关论文
共 50 条
  • [41] MTLM: a multi-task learning model for travel time estimation
    Saijun Xu
    Ruoqian Zhang
    Wanjun Cheng
    Jiajie Xu
    GeoInformatica, 2022, 26 : 379 - 395
  • [42] Simultaneous Estimation of Dish Locations and Calories with Multi-Task Learning
    Ege, Takumi
    Yanai, Keiji
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2019, E102D (07) : 1240 - 1246
  • [43] A Multi-task Learning Method for Direct Estimation of Spinal Curvature
    Wang, Jiacheng
    Wang, Liansheng
    Liu, Changhua
    COMPUTATIONAL METHODS AND CLINICAL APPLICATIONS FOR SPINE IMAGING, CSI 2019, 2020, 11963 : 113 - 118
  • [44] Semi-Supervised Depth Estimation by Multi-Task Learning
    Fu, Qingshun
    Dong, Xuan
    2022 26TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2022, : 3765 - 3771
  • [45] Group LASSO with Asymmetric Structure Estimation for Multi-Task Learning
    Oliveira, Saullo H. G.
    Goncalves, Andre R.
    Von Zuben, Fernando J.
    PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2019, : 3202 - 3208
  • [46] Visual Person Understanding Through Multi-task and Multi-dataset Learning
    Pfeiffer, Kilian
    Hermans, Alexander
    Sarandi, Istvan
    Weber, Mark
    Leibe, Bastian
    PATTERN RECOGNITION, DAGM GCPR 2019, 2019, 11824 : 551 - 566
  • [47] MULTI-TASK LEARNING VIA SHARING INEXACT LOW-RANK SUBSPACE
    Wang, Xiaoqian
    Nie, Feiping
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 3690 - 3694
  • [48] Multi-Task Low-Rank Metric Learning Based on Common Subspace
    Yang, Peipei
    Huang, Kaizhu
    Liu, Cheng-Lin
    NEURAL INFORMATION PROCESSING, PT II, 2011, 7063 : 151 - 159
  • [49] MTLoRA: A Low-Rank Adaptation Approach for Efficient Multi-Task Learning
    Agiza, Ahmed
    Neseem, Marina
    Reda, Sherief
    2024 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2024, : 16196 - 16205
  • [50] Low-Rank Updates of pre-trainedWeights for Multi-Task Learning
    Audibert, Alexandre
    Amini, Massih-Reza
    Usevich, Konstantin
    Clausel, Marianne
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2023), 2023, : 7544 - 7554