Multi-Task Rank Learning for Visual Saliency Estimation

被引:24
|
作者
Li, Jia [1 ,2 ]
Tian, Yonghong [3 ]
Huang, Tiejun [3 ]
Gao, Wen [3 ]
机构
[1] Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China
[2] Grad Univ CAS, Beijing 100049, Peoples R China
[3] Peking Univ, Sch Elect Engn & Comp Sci, Natl Engn Lab Video Technol, Key Lab Machine Percept MoE, Beijing 100871, Peoples R China
关键词
Generalization ability; multi-task learning; pair-wise rank learning; visual saliency; ATTENTION; MODEL;
D O I
10.1109/TCSVT.2011.2129430
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Visual saliency plays an important role in various video applications such as video retargeting and intelligent video advertising. However, existing visual saliency estimation approaches often construct a unified model for all scenes, thus leading to poor performance for the scenes with diversified contents. To solve this problem, we propose a multi-task rank learning approach which can be used to infer multiple saliency models that apply to different scene clusters. In our approach, the problem of visual saliency estimation is formulated in a pair-wise rank learning framework, in which the visual features can be effectively integrated to distinguish salient targets from distractors. A multi-task learning algorithm is then presented to infer multiple visual saliency models simultaneously. By an appropriate sharing of information across models, the generalization ability of each model can be greatly improved. Extensive experiments on a public eye-fixation dataset show that our multi-task rank learning approach outperforms 12 state-of-the-art methods remarkably in visual saliency estimation.
引用
收藏
页码:623 / 636
页数:14
相关论文
共 50 条
  • [11] MULTI-TASK RANK LEARNING FOR IMAGE QUALITY ASSESSMENT
    Xu, Long
    Li, Jia
    Lin, Weisi
    Zhang, Yongbing
    Ma, Lin
    Fang, Yuming
    Zhang, Yun
    Yan, Yihua
    2015 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING (ICASSP), 2015, : 1339 - 1343
  • [12] Multi-Task Rank Learning for Image Quality Assessment
    Xu, Long
    Li, Jia
    Lin, Weisi
    Zhang, Yongbing
    Ma, Lin
    Fang, Yuming
    Yan, Yihua
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2017, 27 (09) : 1833 - 1843
  • [13] Generative Modeling for Multi-task Visual Learning
    Bao, Zhipeng
    Hebert, Martial
    Wang, Yu-Xiong
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,
  • [14] Deep multi-level networks with multi-task learning for saliency detection
    Zhang, Lihe
    Fang, Xiang
    Bo, Hongguang
    Wang, Tiantian
    Lu, Huchuan
    NEUROCOMPUTING, 2018, 312 : 229 - 238
  • [15] A Multi-task Learning Framework for Quality Estimation
    Deoghare, Sourabh
    Choudhary, Paramveer
    Kanojia, Diptesh
    Ranasinghe, Tharindu
    Bhattacharyya, Pushpak
    Orasan, Constantin
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2023), 2023, : 9191 - 9205
  • [16] Multi-Task Learning for Influence Estimation and Maximization
    Panagopoulos, George
    Malliaros, Fragkiskos D.
    Vazirgiannis, Michalis
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2022, 34 (09) : 4398 - 4409
  • [17] Rank-Based Multi-task Learning For Fair Regression
    Zhao, Chen
    Chen, Feng
    2019 19TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2019), 2019, : 916 - 925
  • [18] New Tight Relaxations of Rank Minimization for Multi-Task Learning
    Chang, Wei
    Nie, Feiping
    Wang, Rong
    Li, Xuelong
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, CIKM 2021, 2021, : 2910 - 2914
  • [19] Visual Fatigue Assessment Based on Multi-task Learning
    Wang, Danli
    Wang, Xueyu
    Song, Yaguang
    Xing, Qian
    Zheng, Nan
    JOURNAL OF IMAGING SCIENCE AND TECHNOLOGY, 2019, 63 (06)
  • [20] Curriculum Learning for Multi-Task Classification of Visual Attributes
    Sarafianos, Nikolaos
    Giannakopoulos, Theodore
    Nikou, Christophoros
    Kakadiaris, Ioannis A.
    2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2017), 2017, : 2608 - 2615