Quantum Hall effect on the Lobachevsky plane

被引:11
|
作者
Bulaev, DV [1 ]
Geyler, VA [1 ]
Margulis, VA [1 ]
机构
[1] Mordovian NP Ogarev State Univ, Saransk 430000, Russia
关键词
quantum Hall effect; Lobachevsky plane;
D O I
10.1016/S0921-4526(03)00402-2
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The Hall conductivity of an electron gas on the surface of constant negative curvature (the Lobachevsky plane) in the presence of an orthogonal magnetic field is investigated. It is shown that the surface curvature decreases the quantum Hall plateau widths and shifts the steps in the Hall conductivity to higher magnetic fields (or to lower values of the chemical potential). An increase of temperature results in smearing of the steps. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:180 / 185
页数:6
相关论文
共 50 条
  • [1] A Quantum Dot with Impurity in the Lobachevsky Plane
    Geyler, V.
    Stovicek, P.
    Tusek, M.
    SPECTRAL THEORY IN INNER PRODUCT SPACES AND APPLICATIONS, 2009, 188 : 135 - +
  • [2] On the Spectrum of a Quantum Dot with Impurity in the Lobachevsky Plane
    Stovicek, P.
    Tusek, M.
    RECENT ADVANCES IN OPERATOR THEORY IN HILBERT AND KREIN SPACES, 2010, 198 : 291 - 304
  • [3] Quantum Hall Effect on the Hyperbolic Plane
    A. L. Carey
    K. C. Hannabuss
    V. Mathai
    P. McCann
    Communications in Mathematical Physics, 1998, 190 : 629 - 673
  • [4] Quantum hall effect on the hyperbolic plane
    Carey, AL
    Hannabuss, KC
    Mathai, V
    McCann, P
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 190 (03) : 629 - 673
  • [5] Quantum Hall effect on the hyperbolic plane in the presence of disorder
    Carey, A
    Hannabuss, K
    Mathai, V
    LETTERS IN MATHEMATICAL PHYSICS, 1999, 47 (03) : 215 - 236
  • [6] Quantum Hall Effect on the Hyperbolic Plane in the Presence of Disorder
    A. Carey
    K. Hannabus
    V. Mathai
    Letters in Mathematical Physics, 1999, 47 : 215 - 236
  • [7] On infinite polygons of the Lobachevsky plane
    Kaidasov Zh.
    Journal of Mathematical Sciences, 2007, 141 (1) : 1087 - 1090
  • [8] Lorentzian Geometry on the Lobachevsky Plane
    Yu. L. Sachkov
    Mathematical Notes, 2023, 114 : 127 - 130
  • [9] Lorentzian distance on the Lobachevsky plane
    Sachkov, Yu L.
    NONLINEARITY, 2024, 37 (09)
  • [10] Lorentzian Geometry on the Lobachevsky Plane
    Sachkov, Yu. L.
    MATHEMATICAL NOTES, 2023, 114 (1-2) : 127 - 130