A Quantum Dot with Impurity in the Lobachevsky Plane

被引:0
|
作者
Geyler, V. [1 ]
Stovicek, P. [2 ]
Tusek, M. [2 ]
机构
[1] Mordovian NP Ogarev State Univ, Dept Math, Saransk, Russia
[2] Czech Tech Univ, Fac Nucl Sci, Dept Math, Prague, Czech Republic
关键词
Quantum dot; Lobachevsky plane; point interaction; spectrum;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The curvature effect on a quantum dot with impurity is investigated. The model is considered on the Lobachevsky plane. The confinement and impurity potentials axe chosen so that the model is explicitly solvable. The Green function as well as the Krein Q-function are computed.
引用
收藏
页码:135 / +
页数:2
相关论文
共 50 条
  • [1] On the Spectrum of a Quantum Dot with Impurity in the Lobachevsky Plane
    Stovicek, P.
    Tusek, M.
    RECENT ADVANCES IN OPERATOR THEORY IN HILBERT AND KREIN SPACES, 2010, 198 : 291 - 304
  • [2] Quantum Hall effect on the Lobachevsky plane
    Bulaev, DV
    Geyler, VA
    Margulis, VA
    PHYSICA B-CONDENSED MATTER, 2003, 337 (1-4) : 180 - 185
  • [3] Graphene quantum dot with a hydrogenic impurity
    Gokcek, Neslihan
    Kandemir, Bekir Sitki
    INTERNATIONAL PHYSICS CONFERENCE AT THE ANATOLIAN PEAK (IPCAP2016), 2016, 707
  • [4] Graphene quantum dot with a hydrogenic impurity
    Gokcek, Neslihan
    Kandemir, Bekir Sitki
    INTERNATIONAL PHYSICS CONFERENCE AT THE ANATOLIAN PEAK (IPCAP2016), 2016, 707
  • [5] On infinite polygons of the Lobachevsky plane
    Kaidasov Zh.
    Journal of Mathematical Sciences, 2007, 141 (1) : 1087 - 1090
  • [6] Lorentzian Geometry on the Lobachevsky Plane
    Yu. L. Sachkov
    Mathematical Notes, 2023, 114 : 127 - 130
  • [7] Lorentzian distance on the Lobachevsky plane
    Sachkov, Yu L.
    NONLINEARITY, 2024, 37 (09)
  • [8] Lorentzian Geometry on the Lobachevsky Plane
    Sachkov, Yu. L.
    MATHEMATICAL NOTES, 2023, 114 (1-2) : 127 - 130
  • [9] On the harmonic oscillator on the Lobachevsky plane
    Stovicek, P.
    Tusek, M.
    RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2007, 14 (04) : 493 - 497
  • [10] ON RANDOM WALK IN LOBACHEVSKY PLANE
    TUTUBALIN, VN
    THEORY OF PROBILITY AND ITS APPLICATIONS,USSR, 1968, 13 (03): : 487 - +