A Quantum Dot with Impurity in the Lobachevsky Plane

被引:0
|
作者
Geyler, V. [1 ]
Stovicek, P. [2 ]
Tusek, M. [2 ]
机构
[1] Mordovian NP Ogarev State Univ, Dept Math, Saransk, Russia
[2] Czech Tech Univ, Fac Nucl Sci, Dept Math, Prague, Czech Republic
关键词
Quantum dot; Lobachevsky plane; point interaction; spectrum;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The curvature effect on a quantum dot with impurity is investigated. The model is considered on the Lobachevsky plane. The confinement and impurity potentials axe chosen so that the model is explicitly solvable. The Green function as well as the Krein Q-function are computed.
引用
收藏
页码:135 / +
页数:2
相关论文
共 50 条
  • [41] Impurity States in a Quasi-Conical Quantum Dot
    Khachatryan, Kh. S.
    Mkrtchyan, M. A.
    JOURNAL OF CONTEMPORARY PHYSICS-ARMENIAN ACADEMY OF SCIENCES, 2024, 59 (04) : 396 - 400
  • [42] Tunneling spectroscopy of a quantum dot through a single impurity
    Lind, E
    Gustafson, B
    Pietzonka, I
    Wernersson, LE
    PHYSICAL REVIEW B, 2003, 68 (03):
  • [43] Thermoelectric transport through a quantum dot with a magnetic impurity
    Yu Zhen
    Guo Yu
    Zheng Jun
    Chi Feng
    CHINESE PHYSICS B, 2013, 22 (11)
  • [44] Capacitor feedback in double quantum dot plane
    Lelong, P
    Sakaki, H
    COMPOUND SEMICONDUCTORS 1998, 1999, (162): : 463 - 468
  • [45] On generalizations of Ptolemy's theorem on the Lobachevsky plane
    Kostin, Andrey Viktorovich
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2022, 19 (02): : 404 - 414
  • [46] Special Cases of Hyperbolic Parallelograms on the Lobachevsky Plane
    Maskina M.S.
    Kuptsov M.I.
    Journal of Mathematical Sciences, 2022, 263 (3) : 387 - 395
  • [47] On Analogs of Fuhrmann's Theorem on the Lobachevsky Plane
    Kostin, A. V.
    SIBERIAN MATHEMATICAL JOURNAL, 2024, 65 (03) : 695 - 702
  • [48] Fourier Transform on the Lobachevsky Plane and Operational Calculus
    Yu. A. Neretin
    Functional Analysis and Its Applications, 2020, 54 : 278 - 286
  • [49] Fourier Transform on the Lobachevsky Plane and Operational Calculus
    Neretin, Yu. A.
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2020, 54 (04) : 278 - 286
  • [50] ON NUMBER OF LATTICE POINTS IN CIRCLE ON LOBACHEVSKY PLANE
    SUGI, M
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1993, (01): : 8 - 14