Quantum Hall effect on the Lobachevsky plane

被引:11
|
作者
Bulaev, DV [1 ]
Geyler, VA [1 ]
Margulis, VA [1 ]
机构
[1] Mordovian NP Ogarev State Univ, Saransk 430000, Russia
关键词
quantum Hall effect; Lobachevsky plane;
D O I
10.1016/S0921-4526(03)00402-2
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The Hall conductivity of an electron gas on the surface of constant negative curvature (the Lobachevsky plane) in the presence of an orthogonal magnetic field is investigated. It is shown that the surface curvature decreases the quantum Hall plateau widths and shifts the steps in the Hall conductivity to higher magnetic fields (or to lower values of the chemical potential). An increase of temperature results in smearing of the steps. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:180 / 185
页数:6
相关论文
共 50 条
  • [21] Canonical and boundary representations on the Lobachevsky plane
    Molchanov, VF
    Grosheva, LI
    ACTA APPLICANDAE MATHEMATICAE, 2002, 73 (1-2) : 59 - 77
  • [22] Canonical and Boundary Representations on the Lobachevsky Plane
    V. F. Molchanov
    L. I. Grosheva
    Acta Applicandae Mathematica, 2002, 73 : 59 - 77
  • [23] Reentrant quantum anomalous Hall effect with in-plane magnetic fields in HgMnTe quantum wells
    Hsu, Hsiu-Chuan
    Liu, Xin
    Liu, Chao-Xing
    PHYSICAL REVIEW B, 2013, 88 (08):
  • [24] Quantum Hall effect in bilayer systems and the noncommutative plane: A toy model approach
    Basu, B
    Ghosh, S
    PHYSICS LETTERS A, 2005, 346 (1-3) : 133 - 140
  • [25] Transport in a quantum spin Hall bar: Effect of in-plane magnetic field
    Cheng, Fang
    Lin, L. Z.
    Zhang, D.
    SOLID STATE COMMUNICATIONS, 2014, 188 : 45 - 48
  • [26] Quantum Hall Effect
    A. Jellal
    International Journal of Theoretical Physics, 1998, 37 : 2187 - 2191
  • [27] The Quantum Hall Effect
    Shrivastava, Keshav N.
    INTERNATIONAL CONFERENCE ON FUNDAMENTAL AND APPLIED SCIENCES 2012 (ICFAS2012), 2012, 1482 : 335 - 339
  • [28] Quantum Hall effect
    Jellal, A
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1998, 37 (08) : 2187 - 2191
  • [29] On generalizations of Ptolemy's theorem on the Lobachevsky plane
    Kostin, Andrey Viktorovich
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2022, 19 (02): : 404 - 414
  • [30] Special Cases of Hyperbolic Parallelograms on the Lobachevsky Plane
    Maskina M.S.
    Kuptsov M.I.
    Journal of Mathematical Sciences, 2022, 263 (3) : 387 - 395