About the non-integrability in the Friedmann-Robertson-Walker cosmological model

被引:8
|
作者
Boucher, Delphine [1 ]
Weil, Jacques-Arthur
机构
[1] Univ Rennes 1, IRMAR, F-35014 Rennes, France
[2] Univ Limoges, XLIM, F-87065 Limoges, France
关键词
Hamiltonian systems; integrability; Morales-Ramis-Simo theorem; computer algebra;
D O I
10.1590/S0103-97332007000300010
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the non integrability of the Friedmann-Robertson-Walker cosmological model, in continuation of the work [5] of Coehlo, Skea and Stuchi. Using Morales-Ramis theorem ([10]) and applying a practical nonintegrability criterion deduced from it, we find that the system is not completely integrable for almost all values of the parameters X and A, which was already proved by the authors of [5] applying Kovacic's algorithm. Working on a level surface H = h with h not equal 0 and h not equal -1/4 lambda and using the Morales-Ramis-Simo "higher variational" theory ([11]), we prove that the hamiltonian system cannot be integrable for particular values of lambda among the exceptional values and that it is completely integrable in two special cases (lambda =Lambda =-m(2) and lambda = Lambda=-m(2)/3). We conjecture that there is no other case of complete integrability and give detailed arguments towards this.
引用
收藏
页码:398 / 405
页数:8
相关论文
共 50 条
  • [41] Comment on "Quantization of Friedmann-Robertson-Walker spacetimes in the presence of a negative cosmological constant and radiation"
    Amore, Paolo
    Aranda, Alfredo
    Cervantes, Mayra
    Diaz-Cruz, J. L.
    Fernandez, Francisco M.
    PHYSICAL REVIEW D, 2007, 75 (06):
  • [42] Mechanical properties of the thermal equilibrium Friedmann-Robertson-Walker universe model
    魏益焕
    兰天葆
    张月竹
    付妍妍
    Chinese Physics B, 2014, 23 (05) : 117 - 119
  • [43] First law of thermodynamics and Friedmann equations of Friedmann-Robertson-Walker universe
    Cai, RG
    Kim, SP
    JOURNAL OF HIGH ENERGY PHYSICS, 2005, (02):
  • [44] Mechanical properties of the thermal equilibrium Friedmann-Robertson-Walker universe model
    Wei Yi-Huan
    Lan Tian-Bao
    Zhang Yue-Zhu
    Fu Yan-Yan
    CHINESE PHYSICS B, 2014, 23 (05)
  • [45] Stability of Friedmann-Robertson-Walker universe filled with matter
    Zhao, R
    Zhang, LC
    ACTA PHYSICA SINICA, 2000, 49 (08) : 1644 - 1647
  • [46] Einstein energy associated with the Friedmann-Robertson-Walker metric
    Mitra, Abhas
    GENERAL RELATIVITY AND GRAVITATION, 2010, 42 (03) : 443 - 469
  • [47] Nonintegrability of density perturbations in the Friedmann-Robertson-Walker universe
    Stachowiak, T
    Szydlowski, M
    Maciejewski, AJ
    JOURNAL OF MATHEMATICAL PHYSICS, 2006, 47 (03)
  • [49] Particle decay in expanding Friedmann-Robertson-Walker universes
    Lankinen, Juho
    Vilja, Iiro
    PHYSICAL REVIEW D, 2018, 98 (04)
  • [50] Generalized holographic equipartition for Friedmann-Robertson-Walker universes
    Ai, Wen-Yuan
    Chen, Hua
    Hu, Xian-Ru
    Deng, Jian-Bo
    GENERAL RELATIVITY AND GRAVITATION, 2014, 46 (04) : 1 - 8