About the non-integrability in the Friedmann-Robertson-Walker cosmological model

被引:8
|
作者
Boucher, Delphine [1 ]
Weil, Jacques-Arthur
机构
[1] Univ Rennes 1, IRMAR, F-35014 Rennes, France
[2] Univ Limoges, XLIM, F-87065 Limoges, France
关键词
Hamiltonian systems; integrability; Morales-Ramis-Simo theorem; computer algebra;
D O I
10.1590/S0103-97332007000300010
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the non integrability of the Friedmann-Robertson-Walker cosmological model, in continuation of the work [5] of Coehlo, Skea and Stuchi. Using Morales-Ramis theorem ([10]) and applying a practical nonintegrability criterion deduced from it, we find that the system is not completely integrable for almost all values of the parameters X and A, which was already proved by the authors of [5] applying Kovacic's algorithm. Working on a level surface H = h with h not equal 0 and h not equal -1/4 lambda and using the Morales-Ramis-Simo "higher variational" theory ([11]), we prove that the hamiltonian system cannot be integrable for particular values of lambda among the exceptional values and that it is completely integrable in two special cases (lambda =Lambda =-m(2) and lambda = Lambda=-m(2)/3). We conjecture that there is no other case of complete integrability and give detailed arguments towards this.
引用
收藏
页码:398 / 405
页数:8
相关论文
共 50 条
  • [21] Closed Friedmann-Robertson-Walker model in loop quantum cosmology
    Szulc, Lukasz
    Kaminski, Wojciech
    Lewandowski, Jerzy
    CLASSICAL AND QUANTUM GRAVITY, 2007, 24 (10) : 2621 - 2635
  • [22] Periodic solutions with equal period for the Friedmann-Robertson-Walker model
    Chen, Aiyong
    Tian, Caixing
    Huang, Wentao
    APPLIED MATHEMATICS LETTERS, 2018, 77 : 101 - 107
  • [23] Nonassociative geometry: Friedmann-Robertson-Walker spacetime
    Nesterov, Alexander I.
    Sabinin, Lev V.
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2006, 3 (08) : 1481 - 1491
  • [24] Ricci collineations in Friedmann-Robertson-Walker spacetimes
    Camci, U
    Barnes, A
    CLASSICAL AND QUANTUM GRAVITY, 2002, 19 (02) : 393 - 404
  • [25] STRAIGHT STRINGS AND FRIEDMANN-ROBERTSON-WALKER SPACETIMES
    UNRUH, WG
    PHYSICAL REVIEW D, 1992, 46 (08): : 3265 - 3270
  • [26] Quantum effects in Friedmann-Robertson-Walker cosmologies
    Esposito, G
    Miele, G
    Rosa, L
    Santorelli, P
    CLASSICAL AND QUANTUM GRAVITY, 1995, 12 (12) : 2995 - 3005
  • [27] THE HORIZON PROBLEM IN FRIEDMANN-ROBERTSON-WALKER COSMOLOGY
    CHALLANETLEMSANI, S
    GENERAL RELATIVITY AND GRAVITATION, 1993, 25 (06) : 579 - 587
  • [28] Chaos in preinflationary Friedmann-Robertson-Walker universes
    Monerat, GA
    de Oliveira, HP
    Soares, ID
    PHYSICAL REVIEW D, 1998, 58 (06)
  • [29] FINITE PERTURBATIONS ON FRIEDMANN-ROBERTSON-WALKER MODELS
    IBANEZ, J
    VERDAGUER, E
    ASTROPHYSICAL JOURNAL, 1986, 306 (02): : 401 - 410
  • [30] Particle Creation in Friedmann-Robertson-Walker Universe
    Sevinc, Ozgur
    Aydiner, Ekrem
    GRAVITATION & COSMOLOGY, 2019, 25 (04): : 397 - 406