(6+ε)-approximation for minimum weight dominating set in unit disk graphs

被引:0
|
作者
Gao, Xiaofeng [1 ]
Huang, Yaochun [1 ]
Zhang, Zhao [2 ]
Wu, Weili [1 ]
机构
[1] Univ Texas Dallas, Dept Comp Sci, Dallas, TX 75230 USA
[2] Xingjiang University, Coll Math & Syst Sci, Tin Shui Wai, Hong Kong, Peoples R China
来源
基金
美国国家科学基金会;
关键词
unit disk graph; approximation algorithm; dominating set;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
It was a long-standing open problem whether the minimum weight dominating set in unit disk graphs has a polynomial-time constant-approximation. In 2006, Ambuhl et al solved this problem by presenting a 72-approximation for the minimum weight dominating set and also a 89-approximation for the minimum weight connected dominating set in unit disk graphs. In this paper, we improve their results by giving a (6 + epsilon)-approximation for the minimum weight dominating set and a (10 + epsilon)-approximation for the minimum weight connected dominating set in unit disk graphs where epsilon is any small positive number.
引用
收藏
页码:551 / +
页数:2
相关论文
共 50 条
  • [41] A New Approximation Algorithm for Minimum-Weight ( 1, m ) -Connected Dominating Set
    Zhou, Jiao
    Ran, Yingli
    Pardalos, Panos M.
    Zhang, Zhao
    Tang, Shaojie
    Du, Ding-Zhu
    INFORMS JOURNAL ON COMPUTING, 2024,
  • [42] Improved distributed local approximation algorithm for minimum 2-dominating set in planar graphs
    Czygrinow, A.
    Hanckowiak, M.
    Szymanska, E.
    Wawrzyniak, W.
    Witkowski, M.
    THEORETICAL COMPUTER SCIENCE, 2017, 662 : 1 - 8
  • [43] On computing a minimum secure dominating set in block graphs
    D. Pradhan
    Anupriya Jha
    Journal of Combinatorial Optimization, 2018, 35 : 613 - 631
  • [44] Graphs with unique minimum paired-dominating set
    Chen, Lei
    Lu, Changhong
    Zeng, Zhenbing
    ARS COMBINATORIA, 2015, 119 : 177 - 192
  • [45] On computing a minimum secure dominating set in block graphs
    Pradhan, D.
    Jha, Anupriya
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2018, 35 (02) : 613 - 631
  • [46] Approximating the minimum independent dominating set in perturbed graphs
    Tong, Weitian
    Goebel, Randy
    Lin, Guohui
    THEORETICAL COMPUTER SCIENCE, 2014, 554 : 275 - 282
  • [47] A Fast Metaheuristic for Finding the Minimum Dominating Set in Graphs
    Casado, Alejandra
    Bermudo, Sergio
    Lopez-Sanchez, Ana Dolores
    Sanchez-Oro, Jesus
    METAHEURISTICS, MIC 2022, 2023, 13838 : 554 - 559
  • [48] A Study on the Minimum Dominating Set Problem Approximation in Parallel
    Gambhir, Mahak
    Kothapalli, Kishore
    2017 TENTH INTERNATIONAL CONFERENCE ON CONTEMPORARY COMPUTING (IC3), 2017, : 13 - 18
  • [49] Greedy approximation for the minimum connected dominating set with labeling
    Zishen Yang
    Majun Shi
    Wei Wang
    Optimization Letters, 2021, 15 : 685 - 700
  • [50] Greedy approximation for the minimum connected dominating set with labeling
    Yang, Zishen
    Shi, Majun
    Wang, Wei
    OPTIMIZATION LETTERS, 2021, 15 (02) : 685 - 700