(6+ε)-approximation for minimum weight dominating set in unit disk graphs

被引:0
|
作者
Gao, Xiaofeng [1 ]
Huang, Yaochun [1 ]
Zhang, Zhao [2 ]
Wu, Weili [1 ]
机构
[1] Univ Texas Dallas, Dept Comp Sci, Dallas, TX 75230 USA
[2] Xingjiang University, Coll Math & Syst Sci, Tin Shui Wai, Hong Kong, Peoples R China
来源
基金
美国国家科学基金会;
关键词
unit disk graph; approximation algorithm; dominating set;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
It was a long-standing open problem whether the minimum weight dominating set in unit disk graphs has a polynomial-time constant-approximation. In 2006, Ambuhl et al solved this problem by presenting a 72-approximation for the minimum weight dominating set and also a 89-approximation for the minimum weight connected dominating set in unit disk graphs. In this paper, we improve their results by giving a (6 + epsilon)-approximation for the minimum weight dominating set and a (10 + epsilon)-approximation for the minimum weight connected dominating set in unit disk graphs where epsilon is any small positive number.
引用
收藏
页码:551 / +
页数:2
相关论文
共 50 条
  • [21] Efficient independent set approximation in unit disk graphs
    Das, Gautam K.
    da Fonseca, Guilherme D.
    Jallu, Ramesh K.
    DISCRETE APPLIED MATHEMATICS, 2020, 280 : 63 - 70
  • [22] Parallel algorithms for minimum general partial dominating set and maximum budgeted dominating set in unit disk graph
    Hong, Weizhi
    Ran, Yingli
    Zhang, Zhao
    THEORETICAL COMPUTER SCIENCE, 2022, 932 : 13 - 20
  • [23] Approximation Algorithm for Minimum Weight Fault-Tolerant Virtual Backbone in Unit Disk Graphs
    Shi, Yishuo
    Zhang, Zhao
    Mo, Yuchang
    Du, Ding-Zhu
    IEEE-ACM TRANSACTIONS ON NETWORKING, 2017, 25 (02) : 925 - 933
  • [24] Minimum connected dominating sets and maximal independent sets in unit disk graphs
    Wu, WL
    Du, HW
    Jia, XH
    Li, YS
    Huang, SCH
    THEORETICAL COMPUTER SCIENCE, 2006, 352 (1-3) : 1 - 7
  • [25] Tighter Approximation Bounds for Minimum CDS in Unit Disk Graphs
    Li, Minming
    Wan, Peng-Jun
    Yao, Frances
    ALGORITHMICA, 2011, 61 (04) : 1000 - 1021
  • [26] Tighter Approximation Bounds for Minimum CDS in Unit Disk Graphs
    Minming Li
    Peng-Jun Wan
    Frances Yao
    Algorithmica, 2011, 61 : 1000 - 1021
  • [27] A Variant of Connected Dominating Set in Unit Disk Graphs for Applications in Communication Networks
    Djenouri, Djamel
    Bagaa, Miloud
    2015 IEEE INTERNATIONAL CONFERENCE ON ELECTRO/INFORMATION TECHNOLOGY (EIT), 2015, : 457 - 461
  • [28] New approximations for minimum-weighted dominating sets and minimum-weighted connected dominating sets on unit disk graphs
    Zou, Feng
    Wang, Yuexuan
    Xu, Xiao-Hua
    Li, Xianyue
    Du, Hongwei
    Wan, Pengjun
    Wu, Weili
    THEORETICAL COMPUTER SCIENCE, 2011, 412 (03) : 198 - 208
  • [29] A 2-approximation algorithm for the minimum weight edge dominating set problem
    Fujito, T
    Nagamochi, H
    DISCRETE APPLIED MATHEMATICS, 2002, 118 (03) : 199 - 207
  • [30] Efficient sub-5 approximations for minimum dominating sets in unit disk graphs
    da Fonseca, Guilherme D.
    de Figueiredo, Celina M. H.
    Pereira de Sa, Vinicius G.
    Machado, Raphael C. S.
    THEORETICAL COMPUTER SCIENCE, 2014, 540 : 70 - 81