Real-time RGB-D Mapping and 3-D Modeling on the GPU using the Random Ball Cover Data Structure

被引:0
|
作者
Neumann, Dominik [1 ]
Lugauer, Felix [1 ]
Bauer, Sebastian [1 ]
Wasza, Jakob [1 ]
Hornegger, Joachim [1 ]
机构
[1] Univ Erlangen Nurnberg, Dept Comp Sci, Pattern Recognit Lab, D-91023 Erlangen, Germany
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The modeling of three-dimensional scene geometry from temporal point cloud streams is of particular interest for a variety of computer vision applications. With the advent of RGB-D imaging devices that deliver dense, metric and textured 6-D data in real-time, on-the-fly reconstruction of static environments has come into reach. In this paper, we propose a system for real-time point cloud mapping based on an efficient implementation of the iterative closest point (ICP) algorithm on the graphics processing unit (GPU). In order to achieve robust mappings at real-time performance, our nearest neighbor search evaluates both geometric and photometric information in a direct manner. For acceleration of the search space traversal, we exploit the inherent computing parallelism of GPUs. In this work, we have investigated the fitness of the random ball cover (RBC) data structure and search algorithm, originally proposed for high-dimensional problems, for 6-D data. In particular, we introduce a scheme that enables both fast RBC construction and queries. The proposed system is validated on an indoor scene modeling scenario. For dense data from the Microsoft Kinect sensor (640 x 480 px), our implementation achieved ICP runtimes of < 20 ms on an off-the-shelf consumer GPU.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] DS-KCF: a real-time tracker for RGB-D data
    Sion Hannuna
    Massimo Camplani
    Jake Hall
    Majid Mirmehdi
    Dima Damen
    Tilo Burghardt
    Adeline Paiement
    Lili Tao
    Journal of Real-Time Image Processing, 2019, 16 : 1439 - 1458
  • [22] DS-KCF: a real-time tracker for RGB-D data
    Hannuna, Sion
    Camplani, Massimo
    Hall, Jake
    Mirmehdi, Majid
    Damen, Dima
    Burghardt, Tilo
    Paiement, Adeline
    Tao, Lili
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2019, 16 (05) : 1439 - 1458
  • [23] Multi-volume mapping and tracking for real-time RGB-D sensing
    Ma, Lingni
    Bondarev, Egor
    de With, Peter H. N.
    IMAGE PROCESSING: ALGORITHMS AND SYSTEMS XIII, 2015, 9399
  • [24] Real-time tracking of 3D elastic objects with an RGB-D sensor
    Petit, Antoine
    Lippiello, Vincenzo
    Siciliano, Bruno
    2015 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2015, : 3914 - 3921
  • [25] Egocentric Real-time Workspace Monitoring using an RGB-D Camera
    Damen, Dima
    Gee, Andrew
    Mayol-Cuevas, Walterio
    Calway, Andrew
    2012 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2012, : 1029 - 1036
  • [26] Real-time recognition of suicidal behavior using an RGB-D camera
    Li, Bo
    Bouachir, Wassim
    Gouiaa, Rafik
    Noumeir, Rita
    PROCEEDINGS OF THE 2017 SEVENTH INTERNATIONAL CONFERENCE ON IMAGE PROCESSING THEORY, TOOLS AND APPLICATIONS (IPTA 2017), 2017,
  • [27] Real-time SLAM Using an RGB-D Camera For Mobile Robots
    Hao, Chung Kuo
    Mayer, N. Michael
    2013 CACS INTERNATIONAL AUTOMATIC CONTROL CONFERENCE (CACS), 2013, : 356 - +
  • [28] SlamDunk: Affordable Real-Time RGB-D SLAM
    Fioraio, Nicola
    Di Stefano, Luigi
    COMPUTER VISION - ECCV 2014 WORKSHOPS, PT I, 2015, 8925 : 401 - 414
  • [29] Improved Real-Time Odometry Estimation Method for Incremental RGB-D Mapping by Fusing IMU Data
    Guo, Ruibin
    Zhou, Dongxiang
    Peng, Keju
    Fan, Weihong
    Liu, Yunhui
    PROCEEDINGS OF THE 2016 12TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2016, : 2991 - 2995
  • [30] Change Their Perception RGB-D Cameras for 3-D Modeling and Recognition
    Ren, Xiaofeng
    Fox, Dieter
    Konolige, Kurt
    IEEE ROBOTICS & AUTOMATION MAGAZINE, 2013, 20 (04) : 49 - 59