Superdiffusivity in first-passage percolation

被引:37
|
作者
Licea, C
Newman, CM
Piza, MST
机构
[1] NYU,COURANT INST MATH SCI,NEW YORK,NY 10012
[2] UNIV CALIF IRVINE,DEPT MATH,IRVINE,CA 92717
关键词
D O I
10.1007/s004400050075
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In standard first-passage percolation on Z(d) (with d greater than or equal to 2), the time-minimizing paths from a point to a plane at distance L are expected to have transverse fluctuations of order L(xi). It has been conjectured that xi(d) greater than or equal to 1/2 with the inequality strict (superdiffusivity) at least for low d and with xi(2)= 2/3. We prove (versions of) xi(d) greater than or equal to 1/2 for all d and xi(2) greater than or equal to 3/5.
引用
收藏
页码:559 / 591
页数:33
相关论文
共 50 条
  • [21] Sublinear variance in Euclidean first-passage percolation
    Bernstein, Megan
    Damron, Michael
    Greenwood, Torin
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2020, 130 (08) : 5060 - 5099
  • [22] Critical first-passage percolation starting on the boundary
    Jiang, Jianping
    Yao, Chang-Long
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2019, 129 (06) : 2049 - 2065
  • [23] Batch queues, reversibility and first-passage percolation
    Martin, James B.
    QUEUEING SYSTEMS, 2009, 62 (04) : 411 - 427
  • [24] FIRST-PASSAGE PERCOLATION ON CARTESIAN POWER GRAPHS
    Martinsson, Anders
    ANNALS OF PROBABILITY, 2018, 46 (02): : 1004 - 1041
  • [25] Batch queues, reversibility and first-passage percolation
    James B. Martin
    Queueing Systems, 2009, 62 : 411 - 427
  • [26] Entropy reduction in Euclidean first-passage percolation
    Damron, Michael
    Wang, Xuan
    ELECTRONIC JOURNAL OF PROBABILITY, 2016, 21
  • [27] Local Neighbourhoods for First-Passage Percolation on the Configuration Model
    Dereich, Steffen
    Ortgiese, Marcel
    JOURNAL OF STATISTICAL PHYSICS, 2018, 173 (3-4) : 485 - 501
  • [28] Nonhomogeneous Euclidean first-passage percolation and distance learning
    Groisman, Pablo
    Jonckheere, Matthieu
    Sapienza, Facundo
    BERNOULLI, 2022, 28 (01) : 255 - 276
  • [29] Differentiability at the edge of the percolation cone and related results in first-passage percolation
    Auffinger, Antonio
    Damron, Michael
    PROBABILITY THEORY AND RELATED FIELDS, 2013, 156 (1-2) : 193 - 227
  • [30] Differentiability at the edge of the percolation cone and related results in first-passage percolation
    Antonio Auffinger
    Michael Damron
    Probability Theory and Related Fields, 2013, 156 : 193 - 227