Nonhomogeneous Euclidean first-passage percolation and distance learning

被引:5
|
作者
Groisman, Pablo [1 ,2 ]
Jonckheere, Matthieu [3 ]
Sapienza, Facundo [4 ]
机构
[1] Univ Buenos Aires, Fac Cs Exactas & Nat, Dept Matemat, IMAS CONICET, Buenos Aires, DF, Argentina
[2] NYU Shanghai, NYU ECNU Inst Math Sci, Shanghai, Peoples R China
[3] Univ Buenos Aires, Fac Cs Exactas & Nat, Inst Calculo, CONICET, Buenos Aires, DF, Argentina
[4] Aristas SRL, Buenos Aires, DF, Argentina
关键词
Distance learning; Euclidean first-passage percolation; nonhomogeneous point processes; GEODESICS;
D O I
10.3150/21-BEJ1341
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Consider an i.i.d. sample from an unknown density function supported on an unknown manifold embedded in a high dimensional Euclidean space. We tackle the problem of learning a distance between points, able to capture both the geometry of the manifold and the underlying density. We define such a sample distance and prove the convergence, as the sample size goes to infinity, to a macroscopic one that we call Fermat distance as it minimizes a path functional, resembling Fermat principle in optics. The proof boils down to the study of geodesics in Euclidean first-passage percolation for nonhomogeneous Poisson point processes.
引用
收藏
页码:255 / 276
页数:22
相关论文
共 50 条