Nonhomogeneous Euclidean first-passage percolation and distance learning

被引:5
|
作者
Groisman, Pablo [1 ,2 ]
Jonckheere, Matthieu [3 ]
Sapienza, Facundo [4 ]
机构
[1] Univ Buenos Aires, Fac Cs Exactas & Nat, Dept Matemat, IMAS CONICET, Buenos Aires, DF, Argentina
[2] NYU Shanghai, NYU ECNU Inst Math Sci, Shanghai, Peoples R China
[3] Univ Buenos Aires, Fac Cs Exactas & Nat, Inst Calculo, CONICET, Buenos Aires, DF, Argentina
[4] Aristas SRL, Buenos Aires, DF, Argentina
关键词
Distance learning; Euclidean first-passage percolation; nonhomogeneous point processes; GEODESICS;
D O I
10.3150/21-BEJ1341
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Consider an i.i.d. sample from an unknown density function supported on an unknown manifold embedded in a high dimensional Euclidean space. We tackle the problem of learning a distance between points, able to capture both the geometry of the manifold and the underlying density. We define such a sample distance and prove the convergence, as the sample size goes to infinity, to a macroscopic one that we call Fermat distance as it minimizes a path functional, resembling Fermat principle in optics. The proof boils down to the study of geodesics in Euclidean first-passage percolation for nonhomogeneous Poisson point processes.
引用
收藏
页码:255 / 276
页数:22
相关论文
共 50 条
  • [21] RATIO CONVERGENCE RATES FOR EUCLIDEAN FIRST-PASSAGE PERCOLATION: APPLICATIONS TO THE GRAPH INFINITY LAPLACIAN
    Bungert, Leon
    Calder, Jeff
    Roith, And T.I.M.
    arXiv, 2022,
  • [22] RATIO CONVERGENCE RATES FOR EUCLIDEAN FIRST-PASSAGE PERCOLATION: APPLICATIONS TO THE GRAPH INFINITY LAPLACIAN
    Bungert, Leon
    Calder, Jeff
    Roith, Tim
    ANNALS OF APPLIED PROBABILITY, 2024, 34 (04): : 3870 - 3910
  • [23] Lower rounds for point-to-point wandering exponents in Euclidean first-passage percolation
    Howard, CD
    JOURNAL OF APPLIED PROBABILITY, 2000, 37 (04) : 1061 - 1073
  • [24] A note on a problem by Welsh in first-passage percolation
    Alm, SE
    COMBINATORICS PROBABILITY & COMPUTING, 1998, 7 (01): : 11 - 15
  • [25] Learning shape distance based on mean first-passage time
    Han, M. (minhan@dlut.edu.cn), 1600, Science Press (40):
  • [26] Nondifferentiability of the time constants of first-passage percolation
    Steele, JM
    Zhang, Y
    ANNALS OF PROBABILITY, 2003, 31 (02): : 1028 - 1051
  • [27] First-passage percolation on random simple triangulations
    Stufler, Benedikt
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2024, 21 : 129 - 178
  • [28] A shape theorem for Riemannian first-passage percolation
    LaGatta, T.
    Wehr, J.
    JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (05)
  • [29] First-Passage Percolation with Exponential Times on a Ladder
    Renlund, Henrik
    COMBINATORICS PROBABILITY & COMPUTING, 2010, 19 (04): : 593 - 601
  • [30] Critical first-passage percolation starting on the boundary
    Jiang, Jianping
    Yao, Chang-Long
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2019, 129 (06) : 2049 - 2065