Nonhomogeneous Euclidean first-passage percolation and distance learning

被引:5
|
作者
Groisman, Pablo [1 ,2 ]
Jonckheere, Matthieu [3 ]
Sapienza, Facundo [4 ]
机构
[1] Univ Buenos Aires, Fac Cs Exactas & Nat, Dept Matemat, IMAS CONICET, Buenos Aires, DF, Argentina
[2] NYU Shanghai, NYU ECNU Inst Math Sci, Shanghai, Peoples R China
[3] Univ Buenos Aires, Fac Cs Exactas & Nat, Inst Calculo, CONICET, Buenos Aires, DF, Argentina
[4] Aristas SRL, Buenos Aires, DF, Argentina
关键词
Distance learning; Euclidean first-passage percolation; nonhomogeneous point processes; GEODESICS;
D O I
10.3150/21-BEJ1341
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Consider an i.i.d. sample from an unknown density function supported on an unknown manifold embedded in a high dimensional Euclidean space. We tackle the problem of learning a distance between points, able to capture both the geometry of the manifold and the underlying density. We define such a sample distance and prove the convergence, as the sample size goes to infinity, to a macroscopic one that we call Fermat distance as it minimizes a path functional, resembling Fermat principle in optics. The proof boils down to the study of geodesics in Euclidean first-passage percolation for nonhomogeneous Poisson point processes.
引用
收藏
页码:255 / 276
页数:22
相关论文
共 50 条
  • [41] Comparison of limit shapes for Bernoulli first-passage percolation
    Kubota, Naoki
    Takei, Masato
    INTERNATIONAL JOURNAL OF MATHEMATICS FOR INDUSTRY, 2022, 14 (01):
  • [42] Geodesics in two-dimensional first-passage percolation
    Licea, C
    Newman, CM
    ANNALS OF PROBABILITY, 1996, 24 (01): : 399 - 410
  • [43] Sublinear variance in first-passage percolation for general distributions
    Damron, Michael
    Hanson, Jack
    Sosoe, Philippe
    PROBABILITY THEORY AND RELATED FIELDS, 2015, 163 (1-2) : 223 - 258
  • [44] Resistance bounds for first-passage percolation and maximum flow
    Lyons, R
    Pemantle, R
    Peres, Y
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1999, 86 (01) : 158 - 168
  • [45] UNORIENTED FIRST-PASSAGE PERCOLATION ON THE n-CUBE
    Martinsson, Anders
    ANNALS OF APPLIED PROBABILITY, 2016, 26 (05): : 2597 - 2625
  • [46] Local Neighbourhoods for First-Passage Percolation on the Configuration Model
    Steffen Dereich
    Marcel Ortgiese
    Journal of Statistical Physics, 2018, 173 : 485 - 501
  • [47] Long-Range First-Passage Percolation on the Torus
    van der Hofstad, Remco
    Lodewijks, Bas
    JOURNAL OF STATISTICAL PHYSICS, 2024, 191 (09)
  • [48] Transitions for exceptional times in dynamical first-passage percolation
    Michael Damron
    Jack Hanson
    David Harper
    Wai-Kit Lam
    Probability Theory and Related Fields, 2023, 185 : 1039 - 1085
  • [49] Transitions for exceptional times in dynamical first-passage percolation
    Damron, Michael
    Hanson, Jack
    Harper, David
    Lam, Wai-Kit
    PROBABILITY THEORY AND RELATED FIELDS, 2023, 185 (3-4) : 1039 - 1085
  • [50] Sublinear variance in first-passage percolation for general distributions
    Michael Damron
    Jack Hanson
    Philippe Sosoe
    Probability Theory and Related Fields, 2015, 163 : 223 - 258