F-signature of graded Gorenstein rings

被引:2
|
作者
Sannai, Akiyoshi [1 ]
Watanabe, Kei-ichi [2 ]
机构
[1] Univ Tokyo, Grad Sch Math Sci, Meguro Ku, Tokyo 1538914, Japan
[2] Nihon Univ, Coll Humanities & Sci, Dept Math, Setagaya Ku, Tokyo 1560045, Japan
关键词
CHARACTERISTIC-P; LOCAL-RINGS;
D O I
10.1016/j.jpaa.2010.12.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a commutative ring R, the F-signature was defined by Huneke and Leuschke [Math. Ann. 324 (2) (2002) 391-404]. It is an invariant that measures the order of the rank of the free direct summand of R((e)). Here, R((e)) is R itself, regarded as an R-module through e-times Frobenius action F(e). In this paper, we show a connection of the F-signature of a graded ring with other invariants. More precisely, for a graded F-finite Gorenstein ring R of dimension d. we give an inequality among the F-signature s(R), a-invariant a(R) and Poincare polynomial P(R, t). S(R) <= (-a(R))(d)/2(d-1)d! t ->(lim)(1-t)(d)P(R,t). Moreover, we show that R((e)) has only one free direct summand for any e, if and only if R is F-pure and a(R) = 0. This gives a characterization of such rings. (C) 2011 Published by Elsevier B.V.
引用
收藏
页码:2190 / 2195
页数:6
相关论文
共 50 条
  • [41] Gorenstein flatness and injectivity over Gorenstein rings
    WeiLing Song
    ZhaoYong Huang
    Science in China Series A: Mathematics, 2008, 51 : 215 - 218
  • [42] Gorenstein flatness and injectivity over Gorenstein rings
    SONG WeiLing HUANG ZhaoYong~+ Department of Mathematics
    ScienceinChina(SeriesA:Mathematics), 2008, (02) : 215 - 218
  • [43] Gorenstein flatness and injectivity over Gorenstein rings
    Song WeiLing
    Huang ZhaoYong
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2008, 51 (02): : 215 - 218
  • [44] Gorenstein injective modules over Gorenstein rings
    Enochs, EE
    Jenda, OMG
    COMMUNICATIONS IN ALGEBRA, 1998, 26 (11) : 3489 - 3496
  • [45] CONTINUITY OF HILBERT-KUNZ MULTIPLICITY AND F-SIGNATURE (vol 239, pg 322, 2020)
    Polstra, Thomas
    Smirnov, Ilya
    NAGOYA MATHEMATICAL JOURNAL, 2022, 245 : 229 - 231
  • [46] STRETCHED GORENSTEIN RINGS
    SALLY, JD
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1979, 20 (AUG): : 19 - 26
  • [47] GORENSTEIN MODIFICATIONS AND Q-GORENSTEIN RINGS
    Dao, Hailong
    Iyama, Osamu
    Takahashi, Ryo
    Wemyss, Michael
    JOURNAL OF ALGEBRAIC GEOMETRY, 2020, 29 (04) : 729 - 751
  • [48] GORENSTEIN WITT RINGS
    FITZGERALD, RW
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1988, 40 (05): : 1186 - 1202
  • [49] SYZYGIES AND GORENSTEIN RINGS
    HOSHINO, M
    ARCHIV DER MATHEMATIK, 1990, 55 (04) : 355 - 360
  • [50] Almost Gorenstein rings
    Goto, Shiro
    Matsuoka, Naoyuki
    Tran Thi Phuong
    JOURNAL OF ALGEBRA, 2013, 379 : 355 - 381