F-signature of graded Gorenstein rings

被引:2
|
作者
Sannai, Akiyoshi [1 ]
Watanabe, Kei-ichi [2 ]
机构
[1] Univ Tokyo, Grad Sch Math Sci, Meguro Ku, Tokyo 1538914, Japan
[2] Nihon Univ, Coll Humanities & Sci, Dept Math, Setagaya Ku, Tokyo 1560045, Japan
关键词
CHARACTERISTIC-P; LOCAL-RINGS;
D O I
10.1016/j.jpaa.2010.12.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a commutative ring R, the F-signature was defined by Huneke and Leuschke [Math. Ann. 324 (2) (2002) 391-404]. It is an invariant that measures the order of the rank of the free direct summand of R((e)). Here, R((e)) is R itself, regarded as an R-module through e-times Frobenius action F(e). In this paper, we show a connection of the F-signature of a graded ring with other invariants. More precisely, for a graded F-finite Gorenstein ring R of dimension d. we give an inequality among the F-signature s(R), a-invariant a(R) and Poincare polynomial P(R, t). S(R) <= (-a(R))(d)/2(d-1)d! t ->(lim)(1-t)(d)P(R,t). Moreover, we show that R((e)) has only one free direct summand for any e, if and only if R is F-pure and a(R) = 0. This gives a characterization of such rings. (C) 2011 Published by Elsevier B.V.
引用
收藏
页码:2190 / 2195
页数:6
相关论文
共 50 条
  • [21] Conditions of multiplicity and applications for almost Gorenstein graded rings
    Matsushita, Koji
    Miyashita, Sora
    JOURNAL OF ALGEBRA, 2024, 657 : 581 - 599
  • [22] n-gr-Coherent Rings and Gorenstein Graded Modules
    Amini, Mostafa
    Bennis, Driss
    Mamdouhi, Soumia
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2022, 72 (01) : 125 - 148
  • [23] Bertini theorems for F-signature and Hilbert-Kunz multiplicity
    Carvajal-Rojas, Javier
    Schwede, Karl
    Tucker, Kevin
    MATHEMATISCHE ZEITSCHRIFT, 2021, 299 (1-2) : 1131 - 1153
  • [24] Automating the calculation of the Hilbert-Kunz multiplicity and F-signature
    Johnson, Gabriel
    Spiroff, Sandra
    SOFTWAREX, 2019, 9 : 35 - 38
  • [25] Gorenstein associated graded rings of analytic deviation two ideals
    Goto, S
    Iai, S
    JOURNAL OF ALGEBRA, 2002, 248 (02) : 708 - 723
  • [26] n-gr-coherent rings and Gorenstein graded modules
    Mostafa Amini
    Driss Bennis
    Soumia Mamdouhi
    Czechoslovak Mathematical Journal, 2022, 72 : 125 - 148
  • [27] F-signature and Hilbert-Kunz multiplicity: a combined approach and comparison
    Polstra, Thomas
    Tucker, Kevin
    ALGEBRA & NUMBER THEORY, 2018, 12 (01) : 61 - 97
  • [28] GORENSTEIN GRADED RINGS ASSOCIATED TO IDEALS OF ANALYTIC DEVIATION-2
    GOTO, S
    NAKAMURA, Y
    JOURNAL OF ALGEBRA, 1995, 175 (03) : 811 - 819
  • [29] Comparing generalized Gorenstein properties in semi-standard graded rings
    Miyashita, Sora
    JOURNAL OF ALGEBRA, 2024, 647 : 823 - 843