Anomalous Discharge Product Distribution in Lithium-Air Cathodes

被引:75
|
作者
Nanda, Jagjit [1 ]
Bilheux, Hassina [2 ]
Voisin, Sophie [2 ]
Veith, Gabriel M. [1 ]
Archibald, Richard [3 ]
Walker, Lakeisha [2 ]
Allu, Srikanth [3 ]
Dudney, Nancy J. [1 ]
Pannala, Sreekanth [3 ]
机构
[1] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA
[2] Oak Ridge Natl Lab, Neutron Scattering Sci Lab, Oak Ridge, TN 37831 USA
[3] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2012年 / 116卷 / 15期
关键词
CARBONATE ELECTROLYTES; ORGANIC ELECTROLYTE; BATTERY; FOAMS;
D O I
10.1021/jp3016003
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Using neutron tomographic imaging, we report for the first time the three-dimensional spatial distribution of lithium products in electrochemically discharged lithium-air cathodes. Neutron imaging finds a nonuniform lithium product distribution across the electrode thickness, with the lithium species concentration being higher near the edges of the Li-air electrode and relatively uniform in the center of the electrode. The experimental neutron images were analyzed in context of results obtained from 3D modeling that maps the spatiotemporal variation of the lithium product distribution using a kinetically coupled diffusion based transport model. The origin of such anomalous behavior is due to the competition between the transport of lithium and oxygen and the accompanying electrochemical kinetics. Quantitative understanding of these effects is a critical step toward rechargeability of Li-air electrochemical systems.
引用
收藏
页码:8401 / 8408
页数:8
相关论文
共 50 条
  • [41] Protected anodes for lithium-air batteries
    Aleshin, Gleb Yu.
    Semenenko, Dmitry A.
    Belova, Alina I.
    Zakharchenko, Tatyana K.
    Itkis, Daniil M.
    Goodilin, Eugene A.
    Tretyakov, Yurii D.
    SOLID STATE IONICS, 2011, 184 (01) : 62 - 64
  • [42] Toward True Lithium-Air Batteries
    Wu, Feixiang
    Yu, Yan
    JOULE, 2018, 2 (05) : 815 - 817
  • [43] Analysis of Air Cathode Perfomance for Lithium-Air Batteries
    Wang, Yun
    Cho, Sung Chan
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2013, 160 (10) : A1847 - A1855
  • [44] Advances and challenges in lithium-air batteries
    Tan, P.
    Jiang, H. R.
    Zhu, X. B.
    An, L.
    Jung, C. Y.
    Wu, M. C.
    Shi, L.
    Shyy, W.
    Zhao, T. S.
    APPLIED ENERGY, 2017, 204 : 780 - 806
  • [45] Lithium-Air Battery Progress is Breathtaking
    不详
    MANUFACTURING ENGINEERING, 2016, 156 (02): : 37 - 38
  • [46] LITHIUM-AIR BATTERIES WITH MORE OOMPH
    不详
    CHEMICAL & ENGINEERING NEWS, 2015, 93 (43) : 36 - 36
  • [47] Hybrid and Aqueous Lithium-Air Batteries
    Manthiram, Arumugam
    Li, Longjun
    ADVANCED ENERGY MATERIALS, 2015, 5 (04)
  • [48] Lithium ion conducting membranes for lithium-air batteries
    Sun, Yugang
    NANO ENERGY, 2013, 2 (05) : 801 - 816
  • [49] Achilles' Heel of Lithium-Air Batteries: Lithium Carbonate
    Zhao, Zhiwei
    Huang, Jun
    Peng, Zhangquan
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (15) : 3874 - 3886
  • [50] Air Dehydration Membranes for Nonaqueous Lithium-Air Batteries
    Zhang, Jian
    Xu, Wu
    Li, Xiaohong
    Liu, Wei
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (08) : A940 - A946