Anomalous Discharge Product Distribution in Lithium-Air Cathodes

被引:75
|
作者
Nanda, Jagjit [1 ]
Bilheux, Hassina [2 ]
Voisin, Sophie [2 ]
Veith, Gabriel M. [1 ]
Archibald, Richard [3 ]
Walker, Lakeisha [2 ]
Allu, Srikanth [3 ]
Dudney, Nancy J. [1 ]
Pannala, Sreekanth [3 ]
机构
[1] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA
[2] Oak Ridge Natl Lab, Neutron Scattering Sci Lab, Oak Ridge, TN 37831 USA
[3] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2012年 / 116卷 / 15期
关键词
CARBONATE ELECTROLYTES; ORGANIC ELECTROLYTE; BATTERY; FOAMS;
D O I
10.1021/jp3016003
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Using neutron tomographic imaging, we report for the first time the three-dimensional spatial distribution of lithium products in electrochemically discharged lithium-air cathodes. Neutron imaging finds a nonuniform lithium product distribution across the electrode thickness, with the lithium species concentration being higher near the edges of the Li-air electrode and relatively uniform in the center of the electrode. The experimental neutron images were analyzed in context of results obtained from 3D modeling that maps the spatiotemporal variation of the lithium product distribution using a kinetically coupled diffusion based transport model. The origin of such anomalous behavior is due to the competition between the transport of lithium and oxygen and the accompanying electrochemical kinetics. Quantitative understanding of these effects is a critical step toward rechargeability of Li-air electrochemical systems.
引用
收藏
页码:8401 / 8408
页数:8
相关论文
共 50 条
  • [21] Theoretical study of catalytic performance of X-γ-Graphyne as cathodes for lithium-air batteries
    Vera-Garcia, Armando
    Pacheco-Sanchez, J. H.
    Isidro-Ortega, Frank J.
    Gonzalez-Ruiz, Abraham
    Arellano, J. S.
    COMPUTATIONAL AND THEORETICAL CHEMISTRY, 2025, 1248
  • [22] Study of restricted diffusion of lithium salts in diglyme confined in mesoporous carbons as a model for cathodes in lithium-air batteries
    Maldonado-Ochoa, Santiago A.
    Fuentes-Quezada, Eduardo
    Angarita, Ivette
    Factorovich, Matias H.
    Bruno, Mariano M.
    Acosta, Rodolfo H.
    Longinotti, M. Paula
    Chavez, Fabian Vaca
    de la Llave, Ezequiel
    Corti, Horacio R.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2024, 26 (34) : 22696 - 22705
  • [23] Influence of Surface Area of Mesopore on Discharge Characteristics for Lithium-Air Secondary Battery
    Sakamoto, S.
    Takeguchi, T.
    Kojima, M.
    Ui, K.
    BEYOND LI-ION BATTERIES, 2017, 75 (22): : 67 - 73
  • [24] Review on Lithium-Air Batteries
    Zhang Dong
    Zhang Cunzhong
    Mu Daobin
    Wu Borong
    Wu Feng
    PROGRESS IN CHEMISTRY, 2012, 24 (12) : 2472 - 2482
  • [25] Waterproof lithium-air batteries
    不详
    AMERICAN CERAMIC SOCIETY BULLETIN, 2009, 88 (07): : 36 - 36
  • [26] Modeling discharge deposit formation and its effect on lithium-air battery performance
    Wang, Yun
    ELECTROCHIMICA ACTA, 2012, 75 : 239 - 246
  • [27] Synergistic exploration of nitrogen and cobalt-doped carbon cathodes for enhanced lithium-air batteries
    Behravan, A.
    Aghaie-Khafri, M.
    JOURNAL OF ENERGY STORAGE, 2024, 93
  • [28] Lithium-air and lithium-sulfur batteries
    Bruce, Peter G.
    Hardwick, Laurence J.
    Abraham, K. M.
    MRS BULLETIN, 2011, 36 (07) : 506 - 512
  • [29] Lithium anode for lithium-air secondary batteries
    Imanishi, Nobuyuki
    Hasegawa, Satoshi
    Zhang, Tao
    Hirano, Atushi
    Takeda, Yasuo
    Yamamoto, Osamu
    JOURNAL OF POWER SOURCES, 2008, 185 (02) : 1392 - 1397
  • [30] Relationship between Discharge Profile and Pore Structure for Lithium-Air Secondary Battery
    Matsuhashi, N.
    Takeguchi, T.
    Kojima, M.
    Ui, K.
    BEYOND LI-ION BATTERIES, 2017, 75 (22): : 77 - 84