Anomalous Discharge Product Distribution in Lithium-Air Cathodes

被引:75
|
作者
Nanda, Jagjit [1 ]
Bilheux, Hassina [2 ]
Voisin, Sophie [2 ]
Veith, Gabriel M. [1 ]
Archibald, Richard [3 ]
Walker, Lakeisha [2 ]
Allu, Srikanth [3 ]
Dudney, Nancy J. [1 ]
Pannala, Sreekanth [3 ]
机构
[1] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA
[2] Oak Ridge Natl Lab, Neutron Scattering Sci Lab, Oak Ridge, TN 37831 USA
[3] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2012年 / 116卷 / 15期
关键词
CARBONATE ELECTROLYTES; ORGANIC ELECTROLYTE; BATTERY; FOAMS;
D O I
10.1021/jp3016003
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Using neutron tomographic imaging, we report for the first time the three-dimensional spatial distribution of lithium products in electrochemically discharged lithium-air cathodes. Neutron imaging finds a nonuniform lithium product distribution across the electrode thickness, with the lithium species concentration being higher near the edges of the Li-air electrode and relatively uniform in the center of the electrode. The experimental neutron images were analyzed in context of results obtained from 3D modeling that maps the spatiotemporal variation of the lithium product distribution using a kinetically coupled diffusion based transport model. The origin of such anomalous behavior is due to the competition between the transport of lithium and oxygen and the accompanying electrochemical kinetics. Quantitative understanding of these effects is a critical step toward rechargeability of Li-air electrochemical systems.
引用
收藏
页码:8401 / 8408
页数:8
相关论文
共 50 条
  • [1] Modeling of the lithium-air battery cathodes with broad pore size distribution
    Sergeev, Artem V.
    Chertovich, Alexander V.
    Itkis, Daniil M.
    CHEMICAL PHYSICS LETTERS, 2016, 660 : 149 - 154
  • [2] High-Capacity Lithium-Air Cathodes
    Beattie, S. D.
    Manolescu, D. M.
    Blair, S. L.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2009, 156 (01) : A44 - A47
  • [3] Evaluation and electrochemical analyses of cathodes for lithium-air batteries
    Adams, James
    Karulkar, Mohan
    Anandan, Venkataramani
    JOURNAL OF POWER SOURCES, 2013, 239 : 132 - 143
  • [4] Lithium-Air Battery: On the Possibility of Improving the Discharge Characteristics
    Yu. G. Chirkov
    V. I. Rostokin
    V. N. Andreev
    V. A. Bogdanovskaya
    Russian Journal of Physical Chemistry A, 2022, 96 : 1085 - 1092
  • [5] Lithium-Air Battery: On the Possibility of Improving the Discharge Characteristics
    Chirkov, Yu G.
    Rostokin, V., I
    Andreev, V. N.
    Bogdanovskaya, V. A.
    RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A, 2022, 96 (05) : 1085 - 1092
  • [6] Discharge Mechanism of Lithium-Air Battery With Organic Electrolyte
    Sun, Hong
    Ren, Hai-Chao
    Li, Jie
    Zhang, Tian-Yu
    Wu, Yu-Hou
    Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics, 2020, 41 (04): : 907 - 912
  • [7] Discharge product morphology versus operating temperature in non-aqueous lithium-air batteries
    Tan, P.
    Shyy, W.
    Zhao, T. S.
    Wei, Z. H.
    An, L.
    JOURNAL OF POWER SOURCES, 2015, 278 : 133 - 140
  • [8] A new insight into the oxygen diffusion in porous cathodes of lithium-air batteries
    Ye, Luhan
    Lv, Weiqiang
    Zhang, Kelvin H. L.
    Wang, Xiaoning
    Yan, Pengfei
    Dickerson, James H.
    He, Weidong
    ENERGY, 2015, 83 : 669 - 673
  • [9] Electrochemical behavior of LiNiCo oxide cathodes as catalyst for lithium-air batteries
    Meza, Erika
    Herrera, Francisco
    Gautier, Juan Luis
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2024,
  • [10] New Evidence of LiO2 Dismutation in Lithium-Air Battery Cathodes
    del Pozo, Maria
    Torres, Walter R.
    Herrera, Santiago E.
    Julio Calvo, Ernesto
    CHEMELECTROCHEM, 2016, 3 (10): : 1537 - 1540