Identification of structural parameters based on PZT impedance using genetic algorithms

被引:2
|
作者
Hu, Y. H. [1 ]
Yang, Y. W. [1 ]
Zhang, L. [1 ]
Lu, Y. [2 ]
机构
[1] Nanyang Technol Univ, Sch Civil & Environm Engn, 50 Nanyang Ave, Singapore, Singapore
[2] Univ Edinburgh, Inst Infra Environm, Sch Elect Engn, Edinburg, TX USA
关键词
D O I
10.1109/CEC.2007.4425015
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Electromechanical (EIM) impedance method for structural health monitoring (SHM) is based on detecting the changes of the measured signatures of the Lead Zirconate Titanate (PZT) EM admittance (the inverse of the impedance). Although this method has been successfully applied for various engineering structures for damage detection, it is unable to specify the effect of damage on structural properties. The direct indicator of the structural properties is the structural mechanical impedance which can be extracted from the PZT EM admittance signatures. To model the structural impedance, this paper presents a multiple-degrees-of-freedom system consisting of a number of one-degree-of-freedom elements with mass, spring and damper components. Genetic algorithms (GAs) are employed to search for the optimal solution of the unknown dynamic system parameters by minimizing an objective function. Experiment has been carried on a two-storey concrete frame subjected to base vibrations that simulate earthquake. A number of PZT transducers are regularly arrayed and bonded to the frame structure to acquire PZT EM admittance signatures. The changes of the structural parameters in the model system are quantified using GAs. The relation between the distance of the PZT transducer away from the damage and the changes of the structural parameters identified by the PZT transducer is studied. Finally, the sensitivity of the PZT transducers is discussed.
引用
收藏
页码:4170 / +
页数:4
相关论文
共 50 条
  • [1] Structural Parameters Identification Using PZT Sensors and Genetic Algorithms
    Yang, Yaowen
    Miao, Aiwei
    MULTI-FUNCTIONAL MATERIALS AND STRUCTURES II, PTS 1 AND 2, 2009, 79-82 : 63 - 66
  • [2] Identification of support parameters in elastodynamics using genetic algorithms
    da Silva, Luciano Afonso
    Rade, Domingos Alves
    Cunha, Jesiel
    Ciencia and Engenharia/ Science and Engineering Journal, 2000, 9 (02): : 78 - 87
  • [3] Identification of induction motor parameters using genetic algorithms
    Lara Antonelli, Sofia
    Daniel Donolo, Pablo
    Martin Pezzani, Carlos
    Ciro Quispe, Enrique
    Hernan De Angelo, Cristian
    2023 IEEE WORKSHOP ON POWER ELECTRONICS AND POWER QUALITY APPLICATIONS, PEPQA, 2023,
  • [4] Identification method of vehicle parameters based on genetic algorithms
    Xie X.
    Li J.-L.
    Zhao J.-L.
    Zhang H.
    Yamashita M.
    Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2010, 44 (09): : 1818 - 1824
  • [5] Identification of Preisach hysteresis model parameters using genetic algorithms
    Hergli, K.
    Marouani, H.
    Zidi, M.
    Fouad, Yasser
    Elshazly, Mohamed
    JOURNAL OF KING SAUD UNIVERSITY SCIENCE, 2019, 31 (04) : 746 - 752
  • [6] Parameters identification of excitation system models using genetic algorithms
    Puma, J. Quispe
    Colome, D. Graciela
    IET GENERATION TRANSMISSION & DISTRIBUTION, 2008, 2 (03) : 456 - 467
  • [7] Identification of pneumatic cylinder friction parameters using genetic algorithms
    Wang, J
    Wang, JD
    Daw, N
    Wu, QH
    IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2004, 9 (01) : 100 - 107
  • [8] Identification of structural parameters including crack using one dimensional PZT patch model
    Jinesh, N.
    Shankar, K.
    INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2017, 25 (08) : 1216 - 1241
  • [9] Identification of Induction Machine Electrical Parameters using Genetic Algorithms Optimization
    Kampisios, Konstantinos
    Zanchetta, Pericle
    Gerada, Chris
    Trentin, Andrew
    2008 IEEE INDUSTRY APPLICATIONS SOCIETY ANNUAL MEETING, VOLS 1-5, 2008, : 1834 - 1840
  • [10] Identification of a hysteresis model parameters with genetic algorithms
    Chwastek, Krzysztof
    Szczyglowski, Jan
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2006, 71 (03) : 206 - 211