Identification of pneumatic cylinder friction parameters using genetic algorithms

被引:37
|
作者
Wang, J [1 ]
Wang, JD
Daw, N
Wu, QH
机构
[1] Univ Liverpool, Dept Elect Engn & Elect, Liverpool L69 3GJ, Merseyside, England
[2] Shanghai Univ Sci & Technol, Dept Mech Engn, Shandong 250013, Peoples R China
关键词
genetic algorithms (GA); nonlinear system; pneumatic actuators; parameter identification;
D O I
10.1109/TMECH.2004.823883
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A method for identifying friction parameters of pneumatic actuator systems is developed in this paper, based on genetic algorithms (GA). The statistical expectation of mean-squared errors is traditionally used to form evaluation functions in general optimization problems using GA. However, it has been found that, sometimes, this type of evaluation function does not lead the algorithms to have a satisfactory convergence, that is, the algorithm takes a long period of time or fails to reach the values of parameters to be identified. Different evaluation functions are, therefore, studied in the paper and two types of evaluation functions are found to have the expected rate of convergence and the precision. The algorithm is initially developed and tested using the benchmark data generated by simulations before it is applied for parameter identification using the data obtained from the real system measurement. The results obtained in the paper can provide the manufacturers with the observation to the characteristics inside the pneumatic cylinders.
引用
收藏
页码:100 / 107
页数:8
相关论文
共 50 条
  • [1] Optimization of the control parameters of a pneumatic servo cylinder drive using genetic algorithms
    Jeon, YS
    Lee, CO
    Hong, YS
    CONTROL ENGINEERING PRACTICE, 1998, 6 (07) : 847 - 853
  • [2] Friction parameters identification and compensation of LuGre model base on genetic algorithms
    Wen, Yuqin
    Chu, Ming
    Sun, Hanxu
    PROCEEDINGS OF THE 2015 INTERNATIONAL SYMPOSIUM ON COMPUTERS & INFORMATICS, 2015, 13 : 229 - 238
  • [3] MODELING A PNEUMATIC CYLINDER WITH FRICTION
    Bracha, G. F.
    ENGINEERING MECHANICS 2016, 2016, : 90 - +
  • [4] Parameter identification for LuGre friction model using genetic algorithms
    Liu, De-Peng
    PROCEEDINGS OF 2006 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2006, : 3419 - 3422
  • [5] Identification of support parameters in elastodynamics using genetic algorithms
    da Silva, Luciano Afonso
    Rade, Domingos Alves
    Cunha, Jesiel
    Ciencia and Engenharia/ Science and Engineering Journal, 2000, 9 (02): : 78 - 87
  • [6] Identification of induction motor parameters using genetic algorithms
    Lara Antonelli, Sofia
    Daniel Donolo, Pablo
    Martin Pezzani, Carlos
    Ciro Quispe, Enrique
    Hernan De Angelo, Cristian
    2023 IEEE WORKSHOP ON POWER ELECTRONICS AND POWER QUALITY APPLICATIONS, PEPQA, 2023,
  • [7] Application of genetic algorithms for identification of rheological and friction parameters in copper deformation processes
    Talar, J
    Szeliga, D
    Pietrzyk, M
    ARCHIVES OF METALLURGY, 2002, 47 (01): : 27 - 41
  • [8] APPLICATION OF GENETIC ALGORITHMS FOR IDENTIFICATION OF RHEOLOGICAL AND FRICTION PARAMETERS IN COPPER DEFORMATION PROCESSES
    Talar, Jolanta
    Szeliga, Danuta
    Pietrzyk, Maciej
    Archives of Metallurgy and Materials, 2002, 47 (01) : 28 - 30
  • [9] Structural Parameters Identification Using PZT Sensors and Genetic Algorithms
    Yang, Yaowen
    Miao, Aiwei
    MULTI-FUNCTIONAL MATERIALS AND STRUCTURES II, PTS 1 AND 2, 2009, 79-82 : 63 - 66
  • [10] Identification of Preisach hysteresis model parameters using genetic algorithms
    Hergli, K.
    Marouani, H.
    Zidi, M.
    Fouad, Yasser
    Elshazly, Mohamed
    JOURNAL OF KING SAUD UNIVERSITY SCIENCE, 2019, 31 (04) : 746 - 752