Identification of induction motor parameters using genetic algorithms

被引:2
|
作者
Lara Antonelli, Sofia [1 ]
Daniel Donolo, Pablo [1 ]
Martin Pezzani, Carlos [1 ]
Ciro Quispe, Enrique [2 ]
Hernan De Angelo, Cristian [1 ]
机构
[1] UNRC, CONICET, IITEMA, GEA Fac Ingn, Rio Cuarto, Argentina
[2] Univ Autonoma Occidente, Fac Ingn, Grp Invest Energias GIEN, Cali, Colombia
关键词
Induction motors; Genetic algorithms; Parameter estimation;
D O I
10.1109/PEPQA59611.2023.10325774
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we use Genetic Algorithms to estimate the parameters of an Induction Motor. The identification is performed using data obtained from a reference model that considers core losses and utilizes parameters previously determined through no-load and blocked rotor tests. Based on these results, the model parameters with adjustable values are estimated using Genetic Algorithms. The proposed optimization function for the Genetic Algorithms aims to minimize the weighted error of currents and speed, obtained between the data from the reference model and the simulation results of the model with adjustable parameters. The results show that when the induction motor starts by driving a load proportional to the square of its speed, the mean squared error in parameter estimation is less than 2.5 %, using a population of 20 individuals. These results, although preliminary, allow us to conclude that obtaining appropriate parameters for induction motors operating online is possible.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Induction Motor Parameters Identification using Genetic Algorithms for Varying Flux Levels
    Kampisios, Konstantinos
    Zanchetta, Pericle
    Gerada, Chris
    Trentin, Andrew
    Jasim, Omar
    2008 13TH INTERNATIONAL POWER ELECTRONICS AND MOTION CONTROL CONFERENCE, VOLS 1-5, 2008, : 887 - 892
  • [2] Parameter identification of induction motor model using genetic algorithms
    Alonge, F
    D'Ippolito, F
    Ferrante, G
    Raimondi, FM
    IEE PROCEEDINGS-CONTROL THEORY AND APPLICATIONS, 1998, 145 (06): : 587 - 593
  • [3] Identification of Induction Machine Electrical Parameters using Genetic Algorithms Optimization
    Kampisios, Konstantinos
    Zanchetta, Pericle
    Gerada, Chris
    Trentin, Andrew
    2008 IEEE INDUSTRY APPLICATIONS SOCIETY ANNUAL MEETING, VOLS 1-5, 2008, : 1834 - 1840
  • [4] Refinement of Single-phase Induction Motor Parameters using Genetic Algorithms
    Naew-Ngerndee, N.
    Kulworawanichpong, T.
    PROCEEDINGS OF THE 8TH WSEAS INTERNATIONAL CONFERENCE ON ELECTRIC POWER SYSTEMS, HIGH VOLTAGES, ELECTRIC MACHINES, 2008, : 183 - 188
  • [5] Induction motor parameters and temperature estimation using catalogue data and genetic algorithms
    Andonov, Zdravko
    Jeftenic, Borislav I.
    Mircevski, Slobodan A.
    INTERNATIONAL AEGEAN CONFERENCE ON ELECTRICAL MACHINES AND POWER ELECTRONICS & ELECTROMOTION, PROCEEDINGS, 2007, : 836 - 839
  • [6] Application of genetic algorithms in parameters identification of asynchronous motor
    Jin, Hai
    Ma, Shouguang
    Du, Pengying
    2009 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC 2009), VOLS 1-9, 2009, : 4976 - +
  • [7] Induction motor drive's parameters identification using extended kalman filter algorithms
    Douiri, Moulay Rachid
    Cherkaoui, Mohamed
    WSEAS Transactions on Circuits and Systems, 2014, 13 : 29 - 36
  • [8] PARAMETERS ESTIMATION OF AN INDUCTION MOTOR USING OPTIMIZATION ALGORITHMS
    Tudorache, Tiberiu
    Ilina, Ion-Daniel
    Melcescu, Leonard
    REVUE ROUMAINE DES SCIENCES TECHNIQUES-SERIE ELECTROTECHNIQUE ET ENERGETIQUE, 2016, 61 (02): : 121 - 125
  • [9] Optimization of Induction Motor Control Using Genetic Algorithms
    Toderici, M.
    Toderici, S.
    Imecs, M.
    PROCEEDINGS OF 2010 IEEE INTERNATIONAL CONFERENCE ON AUTOMATION, QUALITY AND TESTING, ROBOTICS (AQTR 2010), VOLS. 1-3, 2010,
  • [10] DETERMINATION OF INDUCTION MOTOR PARAMETERS BY DIFFERENTIAL EVOLUTION ALGORITHM AND GENETIC ALGORITHMS
    Cunkas, Mehmet
    Sag, Tahir
    Aslan, Mustafa
    PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON ADVANCED COMPUTER THEORY AND ENGINEERING (ICACTE 2009), VOLS 1 AND 2, 2009, : 777 - 784