Colouring Graphs with No Induced Six-Vertex Path or Diamond

被引:2
|
作者
Goedgebeur, Jan [1 ,2 ]
Huang, Shenwei [3 ]
Ju, Yiao [3 ]
Merkel, Owen [4 ]
机构
[1] Univ Ghent, Dept Appl Math Comp Sci & Stat, B-9000 Ghent, Belgium
[2] KU Leuven Kulak, Dept Comp Sci, B-8500 Kortrijk, Belgium
[3] Nankai Univ, Coll Comp Sci, Tianjin 300350, Peoples R China
[4] Wilfrid Laurier Univ, Dept Math, Waterloo, ON, Canada
来源
基金
中国国家自然科学基金;
关键词
Graph colouring; k-critical graph; P-6-free graph; Diamond-free graph; CHROMATIC NUMBER;
D O I
10.1007/978-3-030-89543-3_27
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The diamond is the graph obtained by removing an edge from the complete graph on 4 vertices. A graph is (P-6, diamond)-free if it contains no induced subgraph isomorphic to a six-vertex path or a diamond. In this paper we show that the chromatic number of a (P-6, diamond)-free graph G is no larger than the maximum of 6 and the clique number of G. We do this by reducing the problem to imperfect (P-6, diamond)-free graphs via the Strong Perfect Graph Theorem, dividing the imperfect graphs into several cases, and giving a proper colouring for each case. We also show that there is exactly one 6-vertex-critical (P-6, diamond, K-6)-free graph. Together with the Lovasz theta function, this gives a polynomial time algorithm to compute the chromatic number of (P-6, diamond)-free graphs.
引用
收藏
页码:319 / 329
页数:11
相关论文
共 50 条
  • [41] Integrable equations for the partition function of the six-vertex model
    Izergin A.G.
    Karjalainen E.
    Kitanin N.A.
    Journal of Mathematical Sciences, 2000, 100 (2) : 2141 - 2146
  • [42] The six-vertex model on random planar maps revisited
    Price, Andrew Elvey
    Zinn-Justin, Paul
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2023, 196
  • [43] An Ising-type formulation of the six-vertex model
    Bazhanov, Vladimir V.
    Sergeev, Sergey M.
    arXiv, 2022,
  • [44] On the Yang-Baxter equation for the six-vertex model
    Mangazeev, Vladimir V.
    NUCLEAR PHYSICS B, 2014, 882 : 70 - 96
  • [45] The six-vertex model and deformations of the Weyl character formula
    Brubaker, Ben
    Schultz, Andrew
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2015, 42 (04) : 917 - 958
  • [46] On the correlation functions of the domain wall six-vertex model
    Foda, O
    Preston, I
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2004,
  • [47] On the Erdos-Hajnal conjecture for six-vertex tournaments
    Berger, Eli
    Choromanski, Krzysztof
    Chudnovsky, Maria
    EUROPEAN JOURNAL OF COMBINATORICS, 2019, 75 : 113 - 122
  • [48] Exact solution of the six-vertex model on a random lattice
    Kostov, IK
    NUCLEAR PHYSICS B, 2000, 575 (03) : 513 - 534
  • [49] Six-vertex Models and the GUE-corners Process
    Dimitrov, Evgeni
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2020, 2020 (06) : 1794 - 1881
  • [50] Integral Formulas and Antisymmetrization Relations for the Six-Vertex Model
    Luigi Cantini
    Filippo Colomo
    Andrei G. Pronko
    Annales Henri Poincaré, 2020, 21 : 865 - 884