Colouring Graphs with No Induced Six-Vertex Path or Diamond

被引:2
|
作者
Goedgebeur, Jan [1 ,2 ]
Huang, Shenwei [3 ]
Ju, Yiao [3 ]
Merkel, Owen [4 ]
机构
[1] Univ Ghent, Dept Appl Math Comp Sci & Stat, B-9000 Ghent, Belgium
[2] KU Leuven Kulak, Dept Comp Sci, B-8500 Kortrijk, Belgium
[3] Nankai Univ, Coll Comp Sci, Tianjin 300350, Peoples R China
[4] Wilfrid Laurier Univ, Dept Math, Waterloo, ON, Canada
来源
基金
中国国家自然科学基金;
关键词
Graph colouring; k-critical graph; P-6-free graph; Diamond-free graph; CHROMATIC NUMBER;
D O I
10.1007/978-3-030-89543-3_27
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The diamond is the graph obtained by removing an edge from the complete graph on 4 vertices. A graph is (P-6, diamond)-free if it contains no induced subgraph isomorphic to a six-vertex path or a diamond. In this paper we show that the chromatic number of a (P-6, diamond)-free graph G is no larger than the maximum of 6 and the clique number of G. We do this by reducing the problem to imperfect (P-6, diamond)-free graphs via the Strong Perfect Graph Theorem, dividing the imperfect graphs into several cases, and giving a proper colouring for each case. We also show that there is exactly one 6-vertex-critical (P-6, diamond, K-6)-free graph. Together with the Lovasz theta function, this gives a polynomial time algorithm to compute the chromatic number of (P-6, diamond)-free graphs.
引用
收藏
页码:319 / 329
页数:11
相关论文
共 50 条
  • [31] Exact solution of the ''colour'' six-vertex model
    Bariev, RZ
    Klumper, A
    Zittartz, J
    PHYSICS LETTERS A, 1997, 227 (5-6) : 401 - 404
  • [32] Fluctuations near the Boundaries in the Six-Vertex Model
    N. M. Bogolyubov
    M. B. Zvonarev
    A. V. Kitaev
    Journal of Mathematical Sciences, 2003, 115 (1) : 1960 - 1963
  • [33] Delocalization of the height function of the six-vertex model
    Duminil-Copin, Hugo
    Karrila, Alex M.
    Manolescu, Ioan
    Oulamara, Mendes
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2024, 26 (11) : 4131 - 4190
  • [34] Boundary correlation functions of the six-vertex model
    Bogoliubov, NM
    Pronko, AG
    Zvonarev, MB
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (27): : 5525 - 5541
  • [36] Stationary measure for six-vertex model on a strip*
    Yang, Zongrui
    ELECTRONIC JOURNAL OF PROBABILITY, 2024, 29
  • [37] SIX-VERTEX MODEL AND RANDOM MATRIX DISTRIBUTIONS
    Gorin, Vadim
    Nicoletti, Matthew
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2025, 62 (02) : 175 - 234
  • [38] Six-vertex graph packings and coverings of λKv
    Liangt, Zhihe
    Wang, Jianyong
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2010, 73 : 31 - 53
  • [39] On defining numbers of vertex colouring of regular graphs
    Mahmoodian, ES
    Mendelsohn, E
    DISCRETE MATHEMATICS, 1999, 197 (1-3) : 543 - 554
  • [40] Multiplicative vertex-colouring weightings of graphs
    Skowronek-Kaziow, Joanna
    INFORMATION PROCESSING LETTERS, 2012, 112 (05) : 191 - 194