Colouring Graphs with No Induced Six-Vertex Path or Diamond

被引:2
|
作者
Goedgebeur, Jan [1 ,2 ]
Huang, Shenwei [3 ]
Ju, Yiao [3 ]
Merkel, Owen [4 ]
机构
[1] Univ Ghent, Dept Appl Math Comp Sci & Stat, B-9000 Ghent, Belgium
[2] KU Leuven Kulak, Dept Comp Sci, B-8500 Kortrijk, Belgium
[3] Nankai Univ, Coll Comp Sci, Tianjin 300350, Peoples R China
[4] Wilfrid Laurier Univ, Dept Math, Waterloo, ON, Canada
来源
基金
中国国家自然科学基金;
关键词
Graph colouring; k-critical graph; P-6-free graph; Diamond-free graph; CHROMATIC NUMBER;
D O I
10.1007/978-3-030-89543-3_27
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The diamond is the graph obtained by removing an edge from the complete graph on 4 vertices. A graph is (P-6, diamond)-free if it contains no induced subgraph isomorphic to a six-vertex path or a diamond. In this paper we show that the chromatic number of a (P-6, diamond)-free graph G is no larger than the maximum of 6 and the clique number of G. We do this by reducing the problem to imperfect (P-6, diamond)-free graphs via the Strong Perfect Graph Theorem, dividing the imperfect graphs into several cases, and giving a proper colouring for each case. We also show that there is exactly one 6-vertex-critical (P-6, diamond, K-6)-free graph. Together with the Lovasz theta function, this gives a polynomial time algorithm to compute the chromatic number of (P-6, diamond)-free graphs.
引用
收藏
页码:319 / 329
页数:11
相关论文
共 50 条
  • [1] Colouring graphs with no induced six-vertex path or diamond
    Goedgebeur, Jan
    Huang, Shenwei
    Ju, Yiao
    Merkel, Owen
    THEORETICAL COMPUTER SCIENCE, 2023, 941 : 278 - 299
  • [2] Colouring graphs with no induced six-vertex path or diamond
    Goedgebeur, Jan
    Huang, Shenwei
    Ju, Yiao
    Merkel, Owen
    THEORETICAL COMPUTER SCIENCE, 2023, 941 : 278 - 299
  • [3] SQUARE-FREE GRAPHS WITH NO SIX-VERTEX INDUCED PATH
    Karthick, T.
    Maffray, Frederic
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2019, 33 (02) : 874 - 909
  • [4] Triangle-free graphs with no six-vertex induced path
    Chudnovsky, Maria
    Seymour, Paul
    Spirkl, Sophie
    Zhong, Mingxian
    DISCRETE MATHEMATICS, 2018, 341 (08) : 2179 - 2196
  • [5] On the Complexity of Rainbow Vertex Colouring Diametral Path Graphs
    Dyrseth, Jakob
    Lima, Paloma T.
    Leibniz International Proceedings in Informatics, LIPIcs, 2022, 248
  • [6] Convergence of the Stochastic Six-Vertex Model to the ASEPStochastic Six-Vertex Model and ASEP
    Amol Aggarwal
    Mathematical Physics, Analysis and Geometry, 2017, 20
  • [7] On Hamiltonians for six-vertex models
    Brubaker, Ben
    Schultz, Andrew
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2018, 155 : 100 - 121
  • [8] On Delocalization in the Six-Vertex Model
    Lis, Marcin
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2021, 383 (02) : 1181 - 1205
  • [9] STOCHASTIC SIX-VERTEX MODEL
    Borodin, Alexei
    Corwin, Ivan
    Gorin, Vadim
    DUKE MATHEMATICAL JOURNAL, 2016, 165 (03) : 563 - 624
  • [10] On Delocalization in the Six-Vertex Model
    Marcin Lis
    Communications in Mathematical Physics, 2021, 383 : 1181 - 1205