The Black and Scholes equation with stochastic volatility. Variational methods

被引:0
|
作者
Achdou, Y
Tchou, N
机构
[1] Univ Paris 07, F-75251 Paris 5, France
[2] Univ Rennes 1, Irmar, F-35420 Rennes, France
关键词
D O I
10.1016/S0764-4442(01)01958-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a variational analysis and numerical simulations for a Black and Scholes equation with stochastic volatility. (C) 2001 Academie des sciences/Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:1031 / 1036
页数:6
相关论文
共 50 条
  • [31] Total value adjustment for a stochastic volatility model. A comparison with the Black-Scholes model
    Salvador, Beatriz
    Oosterlee, Cornelis W.
    APPLIED MATHEMATICS AND COMPUTATION, 2021, 391
  • [32] BLACK-SCHOLES-MERTON IN RANDOM TIME: A NEW STOCHASTIC VOLATILITY MODEL WITH PATH DEPENDENCE
    Ostrovsky, Dmitry
    INTERNATIONAL JOURNAL OF THEORETICAL AND APPLIED FINANCE, 2007, 10 (05) : 847 - 872
  • [33] Lie Symmetry Analysis of the Black-Scholes-Merton Model for European Options with Stochastic Volatility
    Paliathanasis, Andronikos
    Krishnakumar, K.
    Tamizhmani, K. M.
    Leach, Peter G. L.
    MATHEMATICS, 2016, 4 (02)
  • [34] Comparison of Some Finite Difference Methods for the Black-Scholes Equation
    Appadu, A. R.
    INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2017), 2018, 1978
  • [35] Laplace Transform and finite difference methods for the Black-Scholes equation
    Tagliani, Aldo
    Milev, Mariyan
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 220 : 649 - 658
  • [36] Pricing American call options using the Black-Scholes equation with a nonlinear volatility function
    Grossinho, Maria do Rosario
    Kord, Yaser Faghan
    Sevcovic, Daniel
    JOURNAL OF COMPUTATIONAL FINANCE, 2020, 23 (04) : 93 - 113
  • [37] Lookback options and dynamic fund protection under multiscale stochastic volatility.
    Wong, HY
    Chan, CM
    INSURANCE MATHEMATICS & ECONOMICS, 2005, 37 (02): : 391 - 391
  • [38] Control of the Black-Scholes equation
    David, Claire
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 73 (07) : 1566 - 1575
  • [39] On modified Black-Scholes equation
    Ahmed, E
    Abdusalam, HA
    CHAOS SOLITONS & FRACTALS, 2004, 22 (03) : 583 - 587
  • [40] Algorithm for Determining the Volatility Function in the Black–Scholes Model
    V. M. Isakov
    S. I. Kabanikhin
    A. A. Shananin
    M. A. Shishlenin
    S. Zhang
    Computational Mathematics and Mathematical Physics, 2019, 59 : 1753 - 1758