PREDICTION OF SILICON CONTENT IN HOT METAL BASED ON GOLDEN SINE PARTICLE SWARM OPTIMIZATION AND RANDOM FOREST

被引:0
|
作者
Hu, CH. [1 ]
Yang, K. [1 ]
机构
[1] Univ Sci & Technol Liaoning, Sch Comp Sci & Software Engn, Anshan 114051, Peoples R China
来源
METALURGIJA | 2022年 / 61卷 / 02期
关键词
blast furnace; hot metal; silicon; particle swarm optimization; golden sine algorithm; random forest;
D O I
暂无
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
Particle Swarm Optimization (PSO) algorithm quickly falls into local optimum, low precision. In this paper, add the golden sine operation to the particle position update. The results show that the improved PSO algorithm has better optimization ability. The main parameters affecting the silicon content in hot metal are selected. Then, calculate the correlation coefficient and significance level between parameters and silicon content in hot metal. Finally, the prediction model of silicon content in hot metal is established based on the Random Forest (RF) optimized by improved PSO. The results show that the hit rate is 87,17 %.
引用
收藏
页码:325 / 328
页数:4
相关论文
共 50 条
  • [41] Immune Particle Swarm Optimization for Support Vector Regression on Forest Fire Prediction
    Wang, Yan
    Wang, Juexin
    Du, Wei
    Wang, Chuncai
    Liang, Yanchun
    Zhou, Chunguang
    Huang, Lan
    ADVANCES IN NEURAL NETWORKS - ISNN 2009, PT 2, PROCEEDINGS, 2009, 5552 : 382 - +
  • [42] Content based Video Retrieval using Particle Swarm Optimization
    Salahuddin, Ayesha
    Naqvi, Alina
    Mujtaba, Kainat
    Akhtar, Junaid
    10TH INTERNATIONAL CONFERENCE ON FRONTIERS OF INFORMATION TECHNOLOGY (FIT 2012), 2012, : 79 - 83
  • [43] Classification of attention levels using a Random Forest algorithm optimized with Particle Swarm Optimization
    Guadalupe Bedolla-Ibarra, Maria
    del Carmen Cabrera-Hernandez, Maria
    Antonio Aceves-Fernandez, Marco
    Tovar-Arriaga, Saul
    EVOLVING SYSTEMS, 2022, 13 (05) : 687 - 702
  • [44] Classification of attention levels using a Random Forest algorithm optimized with Particle Swarm Optimization
    María Guadalupe Bedolla-Ibarra
    Maria del Carmen Cabrera-Hernandez
    Marco Antonio Aceves-Fernández
    Saul Tovar-Arriaga
    Evolving Systems, 2022, 13 : 687 - 702
  • [45] Improved golden jackal algorithm based on particle swarm optimization and its application
    Hui L.
    Cao M.
    Chi Y.
    Jisuanji Jicheng Zhizao Xitong/Computer Integrated Manufacturing Systems, CIMS, 2024, 30 (05): : 1733 - 1744
  • [46] A new Combined Particle Swarm Optimization Algorithm Based Golden Section Strategy
    Hui, Fan
    ADVANCED DESIGN TECHNOLOGY, PTS 1-3, 2011, 308-310 : 1099 - 1105
  • [47] Power Transformer Fault Diagnosis Based on Random Forest and Improved Particle Swarm Optimization-Backpropagation-AdaBoost
    Zhou, Lei
    Fu, Zhongjun
    Li, Keyang
    Wang, Yuhui
    Rao, Hang
    ELECTRONICS, 2024, 13 (21)
  • [48] Load Disaggregation in Non-Intrusive Load Monitoring Based on Random Forest Optimized by Particle Swarm Optimization
    Gong, Feixiang
    Liu, Chang
    Jiang, Linru
    Li, Hao
    Lin, Jy
    Yin, Bo
    2017 IEEE CONFERENCE ON ENERGY INTERNET AND ENERGY SYSTEM INTEGRATION (EI2), 2017,
  • [49] Content-Based Image Retrieval Using Colour, Gray, Advanced Texture, Shape Features, and Random Forest Classifier with Optimized Particle Swarm Optimization
    Subramanian, Manoharan
    Lingamuthu, Velmurugan
    Venkatesan, Chandran
    Perumal, Sasikumar
    INTERNATIONAL JOURNAL OF BIOMEDICAL IMAGING, 2022, 2022
  • [50] Soil Heavy Metal Content Prediction Based on a Deep Belief Network and Random Forest Model
    Chen, Ying
    Liu, Zhengying
    Zhao, Xueliang
    Sun, Shicheng
    Li, Xiao
    Xu, Chongxuan
    APPLIED SPECTROSCOPY, 2022, 76 (09) : 1068 - 1079