PREDICTION OF SILICON CONTENT IN HOT METAL BASED ON GOLDEN SINE PARTICLE SWARM OPTIMIZATION AND RANDOM FOREST

被引:0
|
作者
Hu, CH. [1 ]
Yang, K. [1 ]
机构
[1] Univ Sci & Technol Liaoning, Sch Comp Sci & Software Engn, Anshan 114051, Peoples R China
来源
METALURGIJA | 2022年 / 61卷 / 02期
关键词
blast furnace; hot metal; silicon; particle swarm optimization; golden sine algorithm; random forest;
D O I
暂无
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
Particle Swarm Optimization (PSO) algorithm quickly falls into local optimum, low precision. In this paper, add the golden sine operation to the particle position update. The results show that the improved PSO algorithm has better optimization ability. The main parameters affecting the silicon content in hot metal are selected. Then, calculate the correlation coefficient and significance level between parameters and silicon content in hot metal. Finally, the prediction model of silicon content in hot metal is established based on the Random Forest (RF) optimized by improved PSO. The results show that the hit rate is 87,17 %.
引用
收藏
页码:325 / 328
页数:4
相关论文
共 50 条
  • [31] A modified ELM algorithm for the prediction of silicon content in hot metal
    Yongliang Yang
    Sen Zhang
    Yixin Yin
    Neural Computing and Applications, 2016, 27 : 241 - 247
  • [32] A PREDICTION METHOD OF SILICON CONTENT IN HOT METAL OF BLAST FURNACE
    Yang, K.
    Hu, C.
    METALURGIJA, 2022, 61 (3-4): : 581 - 584
  • [33] A modified ELM algorithm for the prediction of silicon content in hot metal
    Yang, Yongliang
    Zhang, Sen
    Yin, Yixin
    NEURAL COMPUTING & APPLICATIONS, 2016, 27 (01): : 241 - 247
  • [34] Optimal Control of Slurry Pressure during Shield Tunnelling Based on Random Forest and Particle Swarm Optimization
    Luo, Weiping
    Yuan, Dajun
    Jin, Dalong
    Lu, Ping
    Chen, Jian
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2021, 128 (01): : 109 - 127
  • [35] A Neighborhood Based Particle Swarm Optimization with Sine Co-sine Mutation Operator for Feature Selection
    Qiu, Chenye
    INFORMATION TECHNOLOGY AND CONTROL, 2022, 51 (03): : 575 - 591
  • [36] Prediction of the hot metal silicon content in blast furnace based on extreme learning machine
    Haigang Zhang
    Sen Zhang
    Yixin Yin
    Xianzhong Chen
    International Journal of Machine Learning and Cybernetics, 2018, 9 : 1697 - 1706
  • [37] Prediction of the hot metal silicon content in blast furnace based on extreme learning machine
    Zhang, Haigang
    Zhang, Sen
    Yin, Yixin
    Chen, Xianzhong
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2018, 9 (10) : 1697 - 1706
  • [38] Prediction of Silicon Content of Hot Metal in Blast Furnace Based on Optuna-GBDT
    Meng, Lili
    Liu, Jinxiang
    Liu, Ran
    Li, Hongyang
    Zheng, Zhi
    Peng, Yao
    Cui, Xi
    ISIJ INTERNATIONAL, 2024, 64 (08) : 1240 - 1250
  • [39] Particle swarm optimization based on random vector partition and learning
    Zhang Q.-K.
    Meng X.-X.
    Zhang H.-X.
    Yang B.
    Liu W.-G.
    Liu, Wei-Guo (weiguo.liu@sdu.edu.cn), 2018, Zhejiang University (52): : 367 - 378and405
  • [40] Prediction of hydrogen solubility in aqueous solution using modified mixed effects random forest based on particle swarm optimization for underground hydrogen storage
    Mwakipunda, Grant Charles
    Komba, Norga Alloyce
    Kouassi, Allou Koffi Franck
    Ayimadu, Edwin Twum
    Mgimba, Melckzedeck Michael
    Ngata, Mbega Ramadhani
    Yu, Long
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 87 : 373 - 388