A BOUND ON THE PATHWIDTH OF SPARSE GRAPHS WITH APPLICATIONS TO EXACT ALGORITHMS

被引:14
|
作者
Kneis, Joachim [1 ]
Moelle, Daniel [1 ]
Richter, Stefan [1 ]
Rossmanith, Peter [1 ]
机构
[1] Rhein Westfal TH Aachen, Dept Comp Sci, D-52056 Aachen, Germany
关键词
graph algorithms; graph theory; algorithms; MAX-2-SAT;
D O I
10.1137/080715482
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a bound of m/5.769 vertical bar O(log n) on the pathwidth of graphs with m edges. Respective path decompositions can be computed in polynomial time. Using a well-known framework for algorithms that rely on tree decompositions, this directly leads to runtime bounds of O*(2(m/5.769)) for Max-2SAT and Max-Cut. Both algorithms require exponential space due to dynamic programming. If we agree to accept a slightly larger bound of m/5.217 + 3, we even obtain path decompositions with a rather simple structure: all bags share a large set of common nodes. Using branching based algorithms, this allows us to solve the same problems in polynomial space and time O*(2(m/5.217)).
引用
收藏
页码:407 / 427
页数:21
相关论文
共 50 条
  • [31] Matching algorithms are fast in sparse random graphs
    Bast, H
    Mehlhorn, K
    Schäfer, G
    Tamaki, H
    STACS 2004, PROCEEDINGS, 2004, 2996 : 81 - 92
  • [32] Matching Algorithms Are Fast in Sparse Random Graphs
    Holger Bast
    Kurt Mehlhorn
    Guido Schafer
    Hisao Tamaki
    Theory of Computing Systems, 2006, 39 : 3 - 14
  • [33] Polynomial algorithms for sparse spanners on subcubic graphs
    Gomez, R.
    Miyazawa, F. K.
    Wakababayashi, Y.
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2024, 48 (01)
  • [34] Exact Algorithms for the Vertex Separator Problem in Graphs
    Cavalcante, Victor F.
    de Souza, Cid C.
    NETWORKS, 2011, 57 (03) : 212 - 230
  • [35] Pathwidth of circular-arc graphs
    Suchan, Karol
    Todinca, Ioan
    GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE, 2007, 4769 : 258 - +
  • [36] Pathwidth and Searching in Parameterized Threshold Graphs
    Krishna, D. Sai
    Reddy, T. V. Thirumala
    Shashank, B. Sai
    Rangan, C. Pandu
    WALCOM: ALGORITHMS AND COMPUTATION, PROCEEDINGS, 2010, 5942 : 293 - +
  • [37] Crossing Number for Graphs with Bounded Pathwidth
    Biedl, Therese
    Chimani, Markus
    Derka, Martin
    Mutzel, Petra
    ALGORITHMICA, 2020, 82 (02) : 355 - 384
  • [38] Approximating Pathwidth for Graphs of Small Treewidth
    Groenland, Carla
    Joret, Gwenael
    Nadara, Wojciech
    Walczak, Bartosz
    ACM TRANSACTIONS ON ALGORITHMS, 2023, 19 (02)
  • [39] Circumference and Pathwidth of Highly Connected Graphs
    Marshall, Emily A.
    Wood, David R.
    JOURNAL OF GRAPH THEORY, 2015, 79 (03) : 222 - 232
  • [40] Crossing Number for Graphs with Bounded Pathwidth
    Therese Biedl
    Markus Chimani
    Martin Derka
    Petra Mutzel
    Algorithmica, 2020, 82 : 355 - 384