A BOUND ON THE PATHWIDTH OF SPARSE GRAPHS WITH APPLICATIONS TO EXACT ALGORITHMS

被引:14
|
作者
Kneis, Joachim [1 ]
Moelle, Daniel [1 ]
Richter, Stefan [1 ]
Rossmanith, Peter [1 ]
机构
[1] Rhein Westfal TH Aachen, Dept Comp Sci, D-52056 Aachen, Germany
关键词
graph algorithms; graph theory; algorithms; MAX-2-SAT;
D O I
10.1137/080715482
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a bound of m/5.769 vertical bar O(log n) on the pathwidth of graphs with m edges. Respective path decompositions can be computed in polynomial time. Using a well-known framework for algorithms that rely on tree decompositions, this directly leads to runtime bounds of O*(2(m/5.769)) for Max-2SAT and Max-Cut. Both algorithms require exponential space due to dynamic programming. If we agree to accept a slightly larger bound of m/5.217 + 3, we even obtain path decompositions with a rather simple structure: all bags share a large set of common nodes. Using branching based algorithms, this allows us to solve the same problems in polynomial space and time O*(2(m/5.217)).
引用
收藏
页码:407 / 427
页数:21
相关论文
共 50 条
  • [21] Pathwidth of planar and line graphs
    Fomin, FV
    GRAPHS AND COMBINATORICS, 2003, 19 (01) : 91 - 99
  • [22] On the treewidth and pathwidth of biconvex bipartite graphs
    Peng, Sheng-Lung
    Yang, Yi-Chuan
    THEORY AND APPLICATIONS OF MODELS OF COMPUTATION, PROCEEDINGS, 2007, 4484 : 244 - +
  • [23] Light Spanners in Bounded Pathwidth Graphs
    Grigni, Michelangelo
    Hung, Hao-Hsiang
    MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2012, 2012, 7464 : 467 - 477
  • [24] Matching algorithms are fast in sparse random graphs
    Bast, H
    Mehlhorn, K
    Schäfer, G
    Tamaki, H
    THEORY OF COMPUTING SYSTEMS, 2006, 39 (01) : 3 - 14
  • [25] Faster algorithms for counting subgraphs in sparse graphs
    Marco Bressan
    Algorithmica, 2021, 83 : 2578 - 2605
  • [26] FPT algorithms for domination in sparse graphs and beyond
    Telle, J. A.
    Villanger, Y.
    THEORETICAL COMPUTER SCIENCE, 2019, 770 : 62 - 68
  • [27] Faster algorithms for counting subgraphs in sparse graphs
    Bressan, Marco
    ALGORITHMICA, 2021, 83 (08) : 2578 - 2605
  • [28] An exact algorithm for MAX-CUT in sparse graphs
    Della Croce, F.
    Kaminski, M. J.
    Paschos, V. Th.
    OPERATIONS RESEARCH LETTERS, 2007, 35 (03) : 403 - 408
  • [29] Exact Algorithms to Clique-Colour Graphs
    Cochefert, Manfred
    Kratsch, Dieter
    SOFSEM 2014: THEORY AND PRACTICE OF COMPUTER SCIENCE, 2014, 8327 : 187 - 198
  • [30] Distributed algorithms for weighted problems in sparse graphs
    Czygrinow, A.
    Hanckowiak, M.
    JOURNAL OF DISCRETE ALGORITHMS, 2006, 4 (04) : 588 - 607