Morita equivalence and spectral triples on noncommutative orbifolds

被引:0
|
作者
Harju, Antti J. [1 ,2 ]
机构
[1] Univ Helsinki, FIN-00014 Helsinki, Finland
[2] QMU, London, England
关键词
Morita equivalence; Spectral triple; Orbifold;
D O I
10.1016/j.geomphys.2016.04.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a finite group. Noncommutative geometry of unital G-algebras is studied. A geometric structure is determined by a spectral triple on the crossed" product algebra associated with the group action. This structure is to be viewed as a representative of a noncommutative orbifold. Based on a study of classical orbifold groupoids, a Morita equivalence for the crossed product spectral triples is developed. Noncommutative orbifolds are Morita equivalence classes of the crossed product spectral triples. As a special case of this Morita theory one can study freeness of the G-action on the noncommutative level. In the case of a free action, the crossed product formalism reduced to the usual spectral triple formalism on the algebra of G-invariant functions. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:367 / 382
页数:16
相关论文
共 50 条
  • [11] Morita equivalence, picard groupoids and noncommutative field theories
    Waldmann, S
    QUANTUM FIELD THEORY AND NONCOMMUTATIVE GEOMETRY, 2005, 662 : 143 - 155
  • [12] Lifting spectral triples to noncommutative principal bundles
    Schwieger, Kay
    Wagner, Stefan
    ADVANCES IN MATHEMATICS, 2022, 396
  • [13] Strong Morita equivalence of higher-dimensional noncommutative tori
    Li, HF
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2004, 576 : 167 - 180
  • [14] Real spectral triples over noncommutative Bieberbach manifolds
    Olczykowski, Piotr
    Sitarz, Andrzej
    JOURNAL OF GEOMETRY AND PHYSICS, 2013, 73 : 91 - 103
  • [15] Spectral triples for noncommutative solenoids and a Wiener's lemma
    Farsi, Carla
    Landry, Therese
    Larsen, Nadia S.
    Packer, Judith
    JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2024, 18 (04) : 1415 - 1452
  • [16] Type III representations and modular spectral triples for the noncommutative torus
    Fidaleo, Francesco
    Suriano, Luca
    JOURNAL OF FUNCTIONAL ANALYSIS, 2018, 275 (06) : 1484 - 1531
  • [17] Strong Morita equivalence of higher-dimensional noncommutative tori. II
    Elliott, George A.
    Li, Hanfeng
    MATHEMATISCHE ANNALEN, 2008, 341 (04) : 825 - 844
  • [18] Strong Morita equivalence of higher-dimensional noncommutative tori. II
    George A. Elliott
    Hanfeng Li
    Mathematische Annalen, 2008, 341 : 825 - 844
  • [19] On noncommutative geometry of orbifolds
    Harju, Antti J.
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2016, 18 (02)
  • [20] Spectral triples for noncommutative solenoidal spaces from self-coverings
    Aiello, Valeriano
    Guido, Daniele
    Isola, Tommaso
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 448 (02) : 1378 - 1412