In this paper, we construct odd finitely summable spectral triples based on length functions of bounded doubling on noncommutative solenoids. Our spectral triples induce a Leibniz Lip-norm on the state spaces of the noncommutative solenoids, giving them the structure of Leibniz quantum compact metric spaces. By applying methods of R. Floricel and A. Ghorbanpour, we also show that our odd spectral triples on noncommutative solenoids can be considered as inductive limits of spectral triples on rotation algebras. In the final section, we prove a noncommutative version of Wiener's lemma and show that our odd spectral triples can be defined to have an associated smooth dense subalgebra which is stable under the holomorphic functional calculus, thus answering a question of B. Long and W. Wu. The construction of the smooth subalgebra also extends to the case of nilpotent discrete groups.
机构:
Univ Maryland, Dept Math, CSCAMM, College Pk, MD 20742 USA
Univ Maryland, Norbert Wiener Ctr, College Pk, MD 20742 USANo Illinois Univ, Dept Math Sci, De Kalb, IL 60115 USA
Balan, Radu
Krishtal, Ilya
论文数: 0引用数: 0
h-index: 0
机构:
No Illinois Univ, Dept Math Sci, De Kalb, IL 60115 USANo Illinois Univ, Dept Math Sci, De Kalb, IL 60115 USA
机构:
Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, I-00133 Rome, ItalyUniv Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, I-00133 Rome, Italy
Fidaleo, Francesco
Suriano, Luca
论文数: 0引用数: 0
h-index: 0
机构:
Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, I-00133 Rome, ItalyUniv Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, I-00133 Rome, Italy