Real-Time Analysis of Oxygen Gradient in Oocyte Respiration Using a High-Density Microelectrode Array

被引:5
|
作者
Tedjo, William [1 ]
Obeidat, Yusra [2 ]
Catandi, Giovana [3 ]
Carnevale, Elaine [3 ]
Chen, Thomas [1 ,4 ]
机构
[1] Colorado State Univ, Dept Elect & Comp Engn, Ft Collins, CO 80523 USA
[2] Yarmouk Univ, Elect Engn Dept, Irbid 21163, Jordan
[3] Colorado State Univ, Dept Biomed Sci, Ft Collins, CO 80523 USA
[4] Colorado State Univ, Sch Biomed Engn, Ft Collins, CO 80523 USA
来源
BIOSENSORS-BASEL | 2021年 / 11卷 / 08期
基金
美国国家科学基金会;
关键词
CMOS biosensor; microelectrode array; electrochemistry; microfluidics; oxygen concentration gradient; oxygen flux; oxygen consumption rate; BOVINE EMBRYOS; ASCORBIC-ACID; CONSUMPTION; CHIP; CELL; FABRICATION; DOPAMINE; HYPOXIA; CULTURE; SENSOR;
D O I
10.3390/bios11080256
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Physiological events related to oxygen concentration gradients provide valuable information to determine the state of metabolizing biological cells. The existing oxygen sensing methods (i.e., optical photoluminescence, magnetic resonance, and scanning electrochemical) are well-established and optimized for existing in vitro analyses. However, such methods also present various limitations in resolution, real-time sensing performance, complexity, and costs. An electrochemical imaging system with an integrated microelectrode array (MEA) would offer attractive means of measuring oxygen consumption rate (OCR) based on the cell's two-dimensional (2D) oxygen concentration gradient. This paper presents an application of an electrochemical sensor platform with a custom-designed complementary-metal-oxide-semiconductor (CMOS)-based microchip and its Pt-coated surface MEA. The high-density MEA provides 16,064 individual electrochemical pixels that cover a 3.6 mm x 3.6 mm area Utilizing the three-electrode configuration, the system is capable of imaging low oxygen concentration (18.3 mu M, 0.58 mg/L, or 13.8 mmHg) at 27.5 mu m spatial resolution and up to 4 Hz temporal resolution. In vitro oxygen imaging experiments were performed to analyze bovine cumulus-oocytes-complexes cells OCR and oxygen flux density. The integration of a microfluidic system allows proper bio-sample handling and delivery to the MEA surface for imaging. Finally, the imaging results are processed and presented as 2D heatmaps, representing the dissolved oxygen concentration in the immediate proximity of the MEA. This paper provides the results of real-time 2D imaging of OCR of live cells/tissues to gain spatial and temporal dynamics of target cell metabolism.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] BioMEA™: A versatile high-density 3D microelectrode array system using integrated electronics
    Charvet, Guillaume
    Rousseau, Lionel
    Billoint, Olivier
    Gharbi, Sadok
    Rostaing, Jean-Pierre
    Joucla, Sebastien
    Trevisiol, Michel
    Bourgerette, Alain
    Chauvet, Philippe
    Moulin, Celine
    Goy, Francois
    Mercier, Bruno
    Colin, Mikael
    Spirkovitch, Serge
    Fanet, Herve
    Meyrand, Pierre
    Guillemaud, Regis
    Yvert, Blaise
    BIOSENSORS & BIOELECTRONICS, 2010, 25 (08): : 1889 - 1896
  • [32] A method for electrophysiological characterization of hamster retinal ganglion cells using a high-density CMOS microelectrode array
    Jones, Ian L.
    Russell, Thomas L.
    Farrow, Karl
    Fiscella, Michele
    Franke, Felix
    Mueller, Jan
    Jaeckel, David
    Hierlemann, Andreas
    FRONTIERS IN NEUROSCIENCE, 2015, 9
  • [33] Real-time ultraviolet ellipsometry monitoring of gate patterning in a high-density plasma
    Vallon, S
    Joubert, O
    Vallier, L
    Ferrieu, F
    Drevillon, B
    Blayo, N
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS, 1997, 15 (03): : 865 - 870
  • [34] HIGH-DENSITY GLASS SCINTILLATOR FOR REAL-TIME X-RAY INSPECTION
    PLACIOUS, RC
    POLANSKY, D
    BERGER, H
    BUENO, C
    VOSBERG, CL
    BETZ, RA
    ROGERSON, DJ
    MATERIALS EVALUATION, 1991, 49 (11) : 1419 - 1421
  • [35] REAL-TIME COMPENSATION OF THE INNER FILTER EFFECT IN HIGH-DENSITY BIOLUMINESCENT CULTURES
    KONSTANTINOV, KB
    DHURJATI, P
    VANDYK, T
    MAJARIAN, W
    LAROSSA, R
    BIOTECHNOLOGY AND BIOENGINEERING, 1993, 42 (10) : 1190 - 1198
  • [36] Real-Time Motor Unit Identification From High-Density Surface EMG
    Glaser, Vojko
    Holobar, Ales
    Zazula, Damjan
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2013, 21 (06) : 949 - 958
  • [37] Well-Shaped Microelectrode Array Structure for High-Density CMOS Amperometric Electrochemical Sensor Array
    Niitsu, Kiichi
    Kuno, Tsuyoshi
    Takihi, Masayuki
    Nakazato, Kazuo
    IEICE TRANSACTIONS ON ELECTRONICS, 2016, E99C (06): : 663 - 666
  • [38] CMU Array: A 3D nanoprinted, fully customizable high-density microelectrode array platform
    Saleh, Mohammad Sadeq
    Ritchie, Sandra M.
    Nicholas, Mark A.
    Gordon, Hailey L.
    Hu, Chunshan
    Jahan, Sanjida
    Yuan, Bin
    Bezbaruah, Rriddhiman
    Reddy, Jay W.
    Ahmed, Zabir
    Chamanzar, Maysamreza
    Yttri, Eric A.
    Panat, Rahul P.
    SCIENCE ADVANCES, 2022, 8 (40)
  • [39] Stimulation and Artifact-Suppression Techniques for In Vitro High-Density Microelectrode Array Systems
    Shadmani, Amir
    Viswam, Vijay
    Chen, Yihui
    Bounik, Raziyeh
    Dragas, Jelena
    Radivojevic, Milos
    Geissler, Sydney
    Sitnikov, Sergey
    Mueller, Jan
    Hierlemann, Andreas
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2019, 66 (09) : 2481 - 2490
  • [40] Impedance Spectroscopy and Electrophysiological Imaging of Cells With a High-Density CMOS Microelectrode Array System
    Viswam, Vijay
    Bounik, Raziyeh
    Shadmani, Amir
    Dragas, Jelena
    Urwyler, Cedar
    Boos, Julia Alicia
    Obien, Marie Engelene J.
    Mueller, Jan
    Chen, Yihui
    Hierlemann, Andreas
    IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, 2018, 12 (06) : 1356 - 1368