Modeling of Graphene for Interconnect Applications

被引:0
|
作者
Contino, A. [1 ,2 ]
Ciofi, I. [2 ]
Politou, M. [1 ,2 ]
Verkest, D. [2 ]
Mocuta, D. [2 ]
Soree, B. [1 ,2 ]
Groeseneken, G. [1 ,2 ]
机构
[1] Katholieke Univ Leuven, Leuven, Belgium
[2] IMEC, Leuven, Belgium
来源
2016 IEEE INTERNATIONAL INTERCONNECT TECHNOLOGY CONFERENCE / ADVANCED METALLIZATION CONFERENCE (IITC/AMC) | 2016年
关键词
graphene; interconnect; modeling; doping; resistivity; simulations; capacitance; delay; benchmark;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We modeled the electrostatic doping in multilayer graphene interconnects by self-consistently solving Poisson's equation and we computed the resistivity per layer by accounting for acoustic and optical phonon scattering. For the analysis, we used two different doping concentrations, representative for graphene on top of hexagonal Boron Nitride and SiO2 substrates. Finally, we benchmarked graphene against Cu interconnects at 10 nm half-pitch in terms of resistance, capacitance, RC delay and circuit delay. Our results show that at least ten layers of graphene are needed in order to achieve lower resistance than Cu. On the other hand, due to the reduced graphene thickness, only four graphene layers are required to outperform Cu in terms of RC delay, because of the lower capacitance. About circuit delay, depending on the assumed contact resistance value, five to ten graphene layers are needed for 3.2 mu m long wires to outperform Cu at the 5 nm logic technology node.
引用
收藏
页码:45 / 47
页数:3
相关论文
共 50 条
  • [31] Strategy for electromagnetic interconnect modeling
    Meuris, P
    Schoenmaker, W
    Magnus, W
    IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2001, 20 (06) : 753 - 762
  • [32] Spin waves for interconnect applications
    Ciubotaru, F.
    Zografos, O.
    Talmelli, G.
    Adelmann, C.
    Radu, I. P.
    Fischer, T.
    Chumak, A.
    Pirro, P.
    Hillebrands, B.
    Devolder, T.
    2017 IEEE INTERNATIONAL INTERCONNECT TECHNOLOGY CONFERENCE (IITC), 2017,
  • [33] Carbon nanotubes in interconnect applications
    Kreupl, F
    Graham, AP
    Duesberg, GS
    Steinhögl, W
    Liebau, M
    Unger, E
    Hönlein, W
    MICROELECTRONIC ENGINEERING, 2002, 64 (1-4) : 399 - 408
  • [34] Carbon nanotubes for interconnect applications
    Kreupl, F
    Graham, AP
    Liebau, M
    Duesberg, GS
    Seidel, R
    Unger, E
    IEEE INTERNATIONAL ELECTRON DEVICES MEETING 2004, TECHNICAL DIGEST, 2004, : 683 - 686
  • [35] MOEMS arrays for interconnect applications
    Castracane, J
    Xu, B
    Baks, C
    Gutin, M
    Gutin, O
    MOEMS AND MINIATURIZED SYSTEMS, 2000, 4178 : 141 - 148
  • [36] Ordered Porosity for Interconnect Applications
    Torres, Jessica M.
    Bielefeld, Jeff
    Blackwell, James
    Michalak, David J.
    Clarke, James S.
    2016 IEEE INTERNATIONAL INTERCONNECT TECHNOLOGY CONFERENCE / ADVANCED METALLIZATION CONFERENCE (IITC/AMC), 2016, : 18 - 20
  • [37] Compact Modeling of Interconnect Reliability
    de Orio, R. L.
    Selberherr, S.
    2011 INTERNATIONAL CONFERENCE OF ELECTRON DEVICES AND SOLID-STATE CIRCUITS (EDSSC), 2011,
  • [38] Modeling and Performance Analysis of Multilayer Zigzag Graphene Nanoribbon (zz-MLGNR) Interconnect for VLSI Application
    Meem, Monjurul Feeroz
    Ash-Saki, Abdullah
    2016 5TH INTERNATIONAL CONFERENCE ON INFORMATICS, ELECTRONICS AND VISION (ICIEV), 2016, : 641 - 645
  • [39] First Principle Analysis of Li-Doped Armchair Graphene Nanoribbons for Nanoscale Metal Interconnect Applications
    Nishad, Vipul Kumar
    Sharma, Rohit
    2020 IEEE 70TH ELECTRONIC COMPONENTS AND TECHNOLOGY CONFERENCE (ECTC 2020), 2020, : 2278 - 2283
  • [40] Heat Transport in Graphene Interconnect Networks With Graphene Lateral Heat Spreaders
    Subrina, Samia
    IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2012, 11 (04) : 777 - 781